Mechanically Jointed Rodless Cylinder Series MY3 ø16, ø25, ø40, ø63

High functionality with reduced height and length

Overall length (Z) reduced by 140 mm at the maximum

MY3A (with rubber bumper)	
0	

MY3B (with air cushion)

MY1B (with air cushion)

		_
© ©		°C
4	Overall length (Z + Stroke)	· · · ·

Overall Length (Z)

Overall Length (Z) (mm						
Series	ø16	ø25	ø40	ø63		
МҮЗА	110	150	240	320		
MY3B	122	178	276	356		
MY1B	160	220	340	460		

The uniquely designed piston shape enables reduction of the height and length as well as practical arrangement of the common piping passages, cushion mechanism and positioning mechanism. This has achieved drastic miniaturization and weight reduction.

MY3A/3B MY1B

Height (H)

ieigni (n)				(mm)
Series	ø16	ø25	ø40	ø63
MY3A MY3B	27	37	54	84
MY1B	37	54	84	116

Weight reduced by **53%** at the maximum

Weight						
Series	ø16	ø25	ø40	ø63		
МҮЗА	0.34	0.99	2.95	8.26		
MY3B	0.35	1.09	3.08	8.99		
MY1B	0.73	1.57	4.41	14.5		
* At a 100 mm stroke						

Series MY3A/3B Model Selection 1

Standards for Tentative Model Selection

Note 1) For operation at a speed exceeding 1000 mm/s, the shock absorber should satisfy the conditions on page 8-14-11.

Note 2) For operation outside the "Stroke Adjusting Unit/Fine Stroke Adjustment Range" on page 8-14-10.

Note 3) The maximum operating speed with the use of the L unit of Ø16 is 800 mm/s within the fine stroke adjustment range and 500 mm/s outside the fine stroke adjustment range. Note 4) As the external shock absorber, a unit with appropriate capacity and features should be installed close to the load center of gravity. Note 5) The selection confirmation is extremely important with this series. The selection should be confirmed thoroughly according to the selection flow on page 8-14-5.

Selection Flow Chart

When an external guide is used, the selection confirmation of the guide capacity should follow the selection procedure of the external guide.

MY3A and MY3B allow direct load application within the allowable range for the built-in guide. The payload in this case will vary depending on the driving speed and the mounting orientation of the cylinder. Please refer to the flow below and confirm the selection. (For more detailed description of the selection flow, please refer to the instruction manual.)

It is possible to select all models of mechanically jointed rodless cylinder (series MY3A, MY3B) according to the procedure indicated above.

Refer to the separate instruction manual for further explanation, and please consult with SMC regarding any questions.

Types of Moment Applied on Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load and position of the center of gravity.

Maximum Allowable Moment/Maximum Load Weight

Madal	Bore size	Maximum allowable moment (Nm)			Maximum load weight (kg)		
Model	(mm)	M 1	M2	Мз	m 1	m 2	mз
МҮЗА	16	1.0			-	-	
MY3B	10	1.8	0.3	0.7	6	3	1.5
МҮЗА	25	0	1.0	0	10	0	4
MY3B		0	1.2	2	10	0	4
МҮЗА	40	24	10	10	40	10	10
MY3B	40	24	4.0	10	40	12	10
МҮЗА	63	70	10	20	00	24	20
MY3B	03	/0	19	30	80	24	20

The above values are the maximum allowable values for moment and load. Refer to each graph on page 8-14-8 regarding the maximum allowable moment and maximum load weight for a particular piston speed

Cautions on Design

Prior to the selection calculation, verify the conformity of the operating conditions, such as the use of an external guide (in case of connection with a floating mechanism bracket, for example) or a stroke adjusting unit, with the maximum operating speed. (Refer to page 8-14-4.)

Load weight (kg)

<Calculation of guide load factor>

- 1. Maximum load weight (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
 - * To evaluate, use va (average speed) for (1) and (2), and v (impact speed v = 1.4va) for (3). Calculate m max for (2) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Sum of guide $\Sigma \alpha$	Load weight [m]	Static moment [M]	$\frac{\text{Dynamic moment } [ME]}{\text{Dynamic moment } [ME]} < 1$
load factors 200	Maximum load weight	Allowable static moment	Allowable dynamic moment —

Note 1) Moment caused by the load, etc., with cylinder in resting condition

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Depending on the shape of the Workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments. Note 3)

2. Reference formulas [Dynamic moment at impact]

- Use the following formulas to calculate dynamic moment when taking stopper impact into consideration. υ : Impact speed (mm/s) m : Load weight (kg)
- F : Load (N)
- FE : Load equivalent to impact (at impact with stopper) (N) Ua: Average speed (mm/s)
- M : Static moment (Nm)

```
\vartheta = 1.4 \vartheta a \text{ (mm/s)} F<sub>E</sub> = 1.4 \vartheta a \times \delta \times m \cdot q
```

$$\therefore M_{\rm E} = \frac{1}{3} \cdot F_{\rm E} \cdot L_1 = 4.57 \Im a \delta m L_1 (N \cdot m)$$

- Note 4) 1.4 $\upsilon a\delta$ is a dimension less coefficient for calculating impact force. Note 5) Average load coefficient = $\frac{1}{3}$
 - This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations
- 3. For detailed selection procedure, please refer to pages 8-14-12 to 13.

- L1 : Distance to the load's center of gravity (m)
- ME: Dynamic moment (Nm)
- δ : Bumper coefficient (kg)
 - With rubber bumper = 4/100 With air cushion = 1/100
- With shock absorber = 1/100 g : Gravitational acceleration (9.8 m/s²) υ
- m ٠Fe MF 0

MX□
MTS
MY□
CY□
MG□
CX□
D-
-X
20-
Data

Maximum Allowable Moment/Maximum Allowable Load

Maximum Allowable Moment Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions. **MY3A**, **MY3B/M**1 **MY3A**, **MY3B/M**3 **MY3A**, **MY3B/M**₂ 100 30 50 40 20 30 50 40 20 10 30

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

ø63

ø40

ø25

ø16

1000 1500

Cushion Capacity

Rubber Bumper Displacement (Additional Stroke due to Pressure on Each Side)

The stop position of the built-in rubber bumper of Series MY3A varies depending on the operating pressure. For alignement at the stroke end, find the guideline for the stroke end position in operation as follows. Find the incremental displacement at the operating pressure in the graph and add it to the stroke end position at no pressurization. If positioning accuracy is required for the stop position at the stroke end, consider installing an external positioning mechanism or switching to the air cushion type (MY3B).

Note) In vertical operation, find the guideline for the stroke end position by adding, in case of the lower end, or subtracting, in case of the upper end, the pressure displacement equivalent to the self weight of the load.

Cushion Capacity

Absorption Capacity of Air Cushion and Stroke Adjusting Unit (MY3B)

Air Cushion Stroke

	()		
Bore size (mm) Cushion stroke			
16	13		
25	18		
40	25		
63	30		

(mm)

Stroke Adjusting Unit/ Fine Stroke Adjustment Range (mm)

Bore size (mm)	Fine stroke adjusting range (mm)
16	0 to -10
25	0 to -12
40	0.4- 10
63	0 to -16

Note) The maximum operating speed will differ when the stroke adjusting unit is used outside the maximum fine stroke adjustment range (with reference to the fixed stroke end), such as at a fixed intermediate position (X416, X417). (Refer to the graph above.)

Calculation of Absorbed Energy for Stroke Adjusting Unit with Built-In Shock Absorber

			(N⋅m)	
	Horizontal	Vertical (downward)	Vertical (upward)	
Type of impact				
Kinetic energy E1	$\frac{1}{2}$ m· v^2			
Kinetic energy E2	F•s	F•s + m•g•s	F∙s – m∙g∙s	
Absorbed energy E	E1 + E2			

Symbols

- U: Speed of impacting object (m/s) m: Weight of impacting object (kg)
- F: Cylinder thrust (N)
- g: Gravitational acceleration (9.8 m/s²) s : Shock absorber stroke (m)
- Note) The speed of the impacting object is measured at the time of impact with the shock absorber.
- Note) With an operating pressure of 0.6 MPa or larger, the use of a cushion or an external shock absorber conforming to the conditions on page 8-14-11 is recommended.

-Х

20-

Data

External Shock Absorber Selection

When the positioning of the stop position is necessary or the absorption capacity of the built-in cushion is not sufficient, refer to the selection procedure below and consider the installation of an external shock absorber.

Selection Confirmation Items with Use of External Shock Absorber

Weight kg

energy.

External guide is used.

Piston Speed with Use of External Shock Absorber

Bore size (mm)	16	25	40	63	
МҮЗА	80 to 1500 mm/s				
MY3B					

An external shock absorber can be used within the above piston speed range. In conjunction with the absorption capacity selection, however, also confirm the conditions which make the shock absorber collision impact force to stay within the allowable range in the graph.

Use of an external shock absorber with conditions exceeding the allowable range may damage the cylinder.

To confirm the collision impact force of the shock absorber, first find the impact force or acceleration under the operating conditions using the selection information or selection software provided by the manufacturer, and then refer to the graph.

(The selection should allow a sufficient margin because the value calculated by the selection software involves an error with reference to the actual value.)

Series MY3A/3B Model Selection 2

Calculation of Guide Load Factor

1. Operating Conditions -

Y3A25-500
00 mm/s
orizontal mounting
ubber bumper (δ = 4/100)

2. Load Blocking

Workpiece Weight and Center of Gravity

Workpiego	Workniece Weight	Center of gravity				
no.	(m)	X axis	Y axis	Z axis		
W	0.8 kg	5 mm	10 mm	20 mm		

3. Calculation of Load Factor for Static Load -

m1: Mass

m1 max (from (1) of graph MY3A/m1) = 10.7 (kg) Load factor $\alpha_1 = m_1/m_1 max = 0.8/10.7 = 0.08$

M1: Moment

M1 max (from (2) of graph MY3A/M1) = 4 (N·m) M1 = m1 x g x X = 0.8 x 9.8 x 5 x 10^{-3} = 0.04 (N·m) Load factor α_2 = M1/M1 max = 0.04/4 = **0.01**

M2: Moment

M2 max (from ③ of graph MY3A/M2) = 0.8 (N·m) M3 = $M_1 \times g \times Y = 0.8 \times 9.8 \times 10 \times 10^{-3} = 0.08$ (N·m) Load factor $\alpha_3 = M_2/M_2 \max = 0.08/0.8 = 0.1$ M2

Calculation of Guide Load Factor

5. Sum and Examination of Guide Load Factors -

 $\Sigma\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.08 + 0.01 + 0.1 + 0.31 + 0.43 = 0.93 \le 1$

The above calculation is within the allowable value, and therefore the selected model can be used. Select a shock absorber separately.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series.

Mechanically Jointed Rodless Cylinder Short Type/Basic Type Series MY3A/3B ø16, ø25, ø40, ø63

How to Order

Applicable Auto Switch/Refer to page 8-30-1 for further information on auto switches.

3 m L

5 m..... Z

ø	Special	Electrical	t t	Wiring	Lo	Load voltage		Auto switc	h model	Lead wir	e length	n (m)*	Pre-wire	Appl	icable
Zp.	function	entry	igh lica	(Output)				Electrica	entry	0.5	3	5	connector		ad
	Tunction	entry		(Output)	D	C	AC	Perpendicular	In-line	(Nil)	(L)	(Z)		10	au
eed /itch	_	Grommet	Yes	3-wire (NPN equiv.)	—	5 V	_	A96V	A96	•	•	_	_	IC circuit	_
ų s				2-wire	24 V 1	12 V	100 V	A93V	A93		•	—	—	—	Relay, PLC
	Diagnostic indication			3-wire (NPN)	1	5 V		M9NV	M9N		•	0	0	IC	
vitc				3-wire (PNP)		-	12 V		M9PV	M9P		•	0	0	circuit
te sv			Crommet	Vaa	2-wire		12 V		M9BV	M9B		•	0	0	—
stat			res	3-wire (NPN)	24 V	5 V		F9NWV	F9NW	•	•	0	0	IC	PLC
olid				3-wire (PNP)		12 V		F9PWV	F9PW		•	0	0	circuit	
S	(indication)			2-wire		12 V		F9BWV	F9BW			0	0	—	
* Lea	ad wire ler	ath symbols	s: 0.5	m Nil (E	xample) F9NV	V Notes	s) * Solid state sw	itches marked v	vith a "O" sy	mbol are	e produ	ced upor	n receipt	t of order.

 nple)
 F9NW
 Notes) * Solid state switches marked with a "O" symbol are produced upon receipt of order.

 F9NWL
 * In addition to the models in the above table, there are some other auto switches

 F9NWZ
 that are applicable. For more information, please refer to page 8-14-23.

Mechanically Jointed Rodless Cylinder Series MY3A/3B

Specifications

Bore size (mm)	16	25	40	63		
Fluid	Air					
Action		Double a	icting			
Operating pressure range		0.15 to 0.8	8 MPa			
Proof pressure	1.2 MPa					
Ambient and fluid temperature		5 to 60)°C			
Cushion	Rubber I	oumper (MY3A)	/Air cushion (M	Y3B)		
Lubricaton	Non-lube					
Stroke length tolerance	1000 mm or less $^{+1.8}_{0}$, 1001 mm to $^{+2.8}_{0}$ Note)					
Port size (Rc, NPT, G)	M5 x 0.8	1/8	1/4	3/8		

Note) The tolerance of MY3A is a value with no pressurization. When a rubber bumper is used, the stroke of MY3A varies according to the operating pressure. To find the stroke length tolerance at each operating pressure, double the additional stroke due to pressure on each side (page 8-14-9) and add it.

Stroke Adjusting Unit Specifications

Bore size (mm)	1	6	2	5	4	0	6	3
Unit symbol	L	Н	L	н	L	Н	L	Н
Shock absorber model	RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725
Fine stroke adjusting range (mm) MY3B	0 to	-10	0 to	-12	0 to	-16	0 to	-16

Piston Speed

Bore size (mm)	16	25	40	63	
Without stroke adjusting unit (MY3A)	80 to 500 mm/s				
Without stroke adjusting unit (MY3B)	80 to 1000 mm/s				
Stroke adjusting unit (L and H unit/MY3B)	3) 80 to 1000 mm/s (ø16L unit: 80 to 800 mm/s)				
External shock absorber (Low reaction type)*		80 to 15	500 mm/	s	

* Refer to "External Shock Absorber Selection" on page 8-14-11. When Series RB is used, operate at a piston speed that will not exceed the absorption capacity of the air cushion and stroke adjusting unit.

Standard Stroke

Bore size (mm)	Standard stroke (mm)*	Max. manufacturable stroke (mm)
16, 25 40, 63	100, 200, 300, 400, 500, 600 700, 800, 900, 1000, 1200 1400, 1600, 1800, 2000	3000

* Strokes are manufacturable in 1mm increments, up to the maximum stroke. However, when exceeding a 2000 mm stroke, specify "-XB11" at the end of the model number. Refer to the made to order specifications on page 8-14-24.

Theoretical Output Piston

0.2

area

(mm²)

Operating pressure (MPa)								
0.3	0.4	0.5	0.6	0.				
00		100	100					

16	200	40	60	80	100	120	140	160
25	490	98	147	196	245	294	343	392
40	1256	251	377	502	628	754	879	1005
63	3115	623	934	1246	1557	1869	2180	2492

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Option

Bore

size

(mm)

Stroke Adjusting Unit Model

Model	Bore size		Unit Bore size		Unit Bore size		16	25	40	63
	1	Left	MY3B-A16L1	MY3B-A25L1	MY3B-A40L1	MY3B-A63L1				
MV2D		Right	MY3B-A16L2	MY3B-A25L2	MY3B-A40L2	MY3B-A63L2				
IVI 1 3 D	11	Left	MY3B-A16H1	MY3B-A25H1	MY3B-A40H1	MY3B-A63H1				
	H UNIT	Right	MY3B-A16H2	MY3B-A25H2	MY3B-A40H2	MY3B-A63H2				

Shock Absorber Specifications

N	lodel	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725		
Max. energ	y absorption (J)	0.84	2.4	10.1	29.8	46.6		
Stroke abs	sorption (mm)	6	7	12	15	25		
Max. impac	t speed (mm/s)	1000						
Max. opera (cycles/mir	ating frequency 1)	80	70	45	25	10		
Spring	Extended	1.96	4.22	6.86	8.34	8.83		
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01		
Operating range (°C	temperature	5 to 60						

Weight

Unit: N

0.8

Model	Bore size	Basic	Additional weight per	Stroke adjusting unit weight (per unit)		
Woder	(mm)	weight	each 50 mm of stroke	Weight of L unit	Weight of H unit	
	16	0.22	0.06			
MY3A	25	0.65	0.17			
MITCA	40	2.45	0.25			
	63	7.14	0.56			
	16	0.23	0.06	0.04	0.05	
МҮЗВ	25	0.75	0.17	0.10	0.15	
	40	2.58	0.25	0.26	0.30	
	63	7.87	0.56	0.57	0.92	

Calculation method

Example: MY3B25-300L

Made to Order Specifications

Refer to pages 8-14-24 to 8-14-25 regarding made to order specifications for Series MY3A/B.

MX

MTS

MY

CY

MG□

CX

D-

-Х

20-

Data

Unit: kg

Construction

MY3A

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover	Aluminum alloy	Hard anodized
3	Slide table	Aluminum alloy	Electroless nickel plated
4	Piston yoke	Stainless steel	
5	Piston	Aluminum alloy	Chromated
6	Wear ring	Special resin	
7	Belt separator	Special resin	
8	Belt clamp	Special resin	
1	Stopper	Carbon steel	Nickel plated

No.	Description	Material	Note
(12)	Spring pin	Carbon tool steel	Black zinc chromated
13	Seal ring	Brass	
(14)	Bearing	Special resin	
17	Inner wiper	Special resin	
(19)	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
20	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
21	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
22	Hexagon socket head taper plug	Carbon steel	Nickel plated
24	Magnet	Rare earth magnet	
25	Seal magnet	Rubber magnet	

Replacement Parts: Seal Kit

No.	Description	Material	Qty.	MY3A16	MY3A25	MY3A40	MY3A63
9	Seal belt	Special resin	1	MY3A16-16A-Stroke	MY3A25-16A-Stroke	MY3A40-16A-Stroke	MY3A63-16A-Stroke
10	Dust seal band	Stainless steel	1	MY3A16-16B-Stroke	MY3A25-16B-Stroke	MY3A40-16B-Stroke	MY3A63-16B-Stroke
(15)	Gasket bumper	NBR	2	RMA-16	RMA-25	RMA-40	RMA-63
(16)	Piston seal	NBR	2	RMY-16	RMY-25	RMY-40	RMY-63
(18)	Scraper	Special resin	1	MYA16-15-R6656	MYA25-15-R6657	MYA40-15-R6658	MYA63-15-R6659
23	O-ring	NBR	4	ø6.2 x ø3 x ø1.6	C-5	ø10.5 x ø8.5 x ø1	C-14

Component Parts

No.	Description	Material	Note		
1	Cylinder tube	Aluminum alloy	Hard anodized		
2	Head cover	Aluminum alloy	Hard anodized		
3	Slide table	Aluminum alloy	Electroless nickel plated		
(4)	Piston yoke	Stainless steel			
(5)	Piston	Aluminum alloy	Chromated		
6	Wear ring	Special resin			
7	Belt separator	Special resin			
8	Belt clamp	Special resin			
11	Stopper	Carbon steel	Nickel plated		
(12)	Spring pin	Carbon tool steel	Black zinc chromated		

No.	Description	Material	Note
13	Cushion boss	Aluminum alloy	Chromated
14)	Bearing	Special resin	
17	Inner wiper	Special resin	
(19)	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
20	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
21)	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated
22	Hexagon socket head taper plug	Carbon steel	Nickel plated
24)	Magnet	Rare earth magnet	
25	Seal magnet	Rubber magnet	
26	Cushion ring	Brass	
27)	Cushion needle	Rolled steel	Nickel plated

Replacement Parts: Seal Kit

No.	Description	Material	Qty.	MY3B16	MY3B25	MY3B40	MY3B63
9	Seal belt	Special resin	1	MY3B16-16A-Stroke	MY3B25-16A-Stroke	MY3B40-16A-Stroke	MY3B63-16A-Stroke
10	Dust seal band	Stainless steel	1	MY3B16-16B-Stroke	MY3B25-16B-Stroke	MY3B40-16B-Stroke	MY3B63-16B-Stroke
(15)	Tube gasket	NBR	2	RMB-16	RMB-25	RMB-40	RMB-63
(16)	Piston seal	NBR	2	RMY-16	RMY-25	RMY-40	RMY-63
(18)	Scraper	Special resin	1	MYA16-15-R6656	MYA25-15-R6657	MYA40-15-R6658	MYA63-15-R6659
23	O-ring	NBR	4	ø6.2 x ø3 x ø1.6	C-5	ø10.5×ø8.5×ø1	C-14
28	O-ring	NBR	2	ø4 x ø1.8 x ø1.1	ø4 x ø1.8 x ø1.1	ø7.15 x ø3.75 x ø1.7	ø8.3 x ø4.5 x ø1.9
29	Cushion seal	NBR	2	MCS-3	MCS-5	RCS-8	RCS-12

MX□

MTS

MY□

CY□

MG□

CX□

D-

-X

20-

Data

Short Type: ø16, ø25, ø40, ø63

MY3A Bore size - Stroke

																		(mm)
Model	Α	В	С	Е	G	Н	HG	J	IJ	KK	L	LD	LL	LW	М	М	М	N
MY3A16	55	6	18	2	9.5	27	5	M4 x	0.7	5	65	3.5	22.5	41	6	M4 x	0.7	13.5
MY3A25	75	9.5	25	2	14	37	7.4	M5 x	: 0.8	7.5	95	5.5	27.5	61	8	M5 x	0.8	20
MY3A40	120	14	38	2	18	54	12	M6 x	: 1	12	160	8.6	40	90	12	M6 x	1	27
MY3A63	160	17	60	3	20.5	84	16.5	M8 x	1.25	22	220	11	50	134	16	M8 x	1.25	31
											-							
Model	NE	NG	NH	NW	F	>	PA	PB	PC	PD	PG	Q	QW	Т	TT	UU	YW	Z
MY3A16	22.5	8	17.2	43	M5 >	« 0.8	44	26	32.5	4	4	102	19	7	6.5	30	42	110
MY3A25	32	10	24	65	Rc, NP	T, G ¹ / ₈	64	40	47.5	6	6	138	30	10	9	47	62	150
MY3A40	46	15	37	94	Rc, NP	T, G ¹ / ₄	112	60	80	7.5	8.5	223	40	14	14	66	92	240
MY3A63	70	29	58	139	Rc, NP	T, G ³ / ₈	162	84	110	10	10	300	64	16	20	99	136	320

Basic Type: ø16, ø25, ø40, ø63

MY3B25

MY3B40

MY3B63

7.5

8.5

12.2

16.5

27.5

Rc,NPT,G1/8

Rc,NPT,G1/4

Rc,NPT,G³/8

47.5 6

14.5

19.5

23.5

Basic Type: ø16, ø25, ø40, ø63

Stroke Adjusting Unit

Shock absorber for low load + Adjusting bolt

MY3B Bore size - Stroke L

Stroke adjusting unit /

												(mm)
Applicable cylinder	Е	EC	EY	FC	h	S	SD	Т	TT	TU	W	Shock absorber model
MY3B16	14.1	21.5	26.5	34.5	2.4	40.8	25.8	6	0.9	25	62	RB0806
MY3B25	20.1	29.8	36.5	51.5	3.6	46.7	25.2	7	1.4	28.5	90	RB1007
MY3B40	30.1	45	53.5	72.5	5	67.3	36.3	12	0.9	39	128	RB1412
MY3B63	36.1	70.5	83.5	108	6	73.2	36.2	15	0.9	43	178	RB2015

Shock absorber for high load + Adjusting bolt MY3B Bore size - Stroke H

												(mm)
Applicable cylinder	E	EC	EY	FC	h	S	SD	Т	TT	TU	W	Shock absorber model
MY3B16	14.1	23	29.5	34.5	2.4	46.7	31.7	7	0.9	25	62	RB1007
MY3B25	20.1	31.8	41	52.2	3.6	67.3	45.8	12	1.4	28.5	90	RB1412
MY3B40	30.1	48	60.5	73.5	5	73.2	42.2	15	0.9	39	128	RB2015
MY3B63	36.1	74.5	91	108	6	99	62	25	0.9	43	178	RB2725

Mechanically Jointed Rodless Cylinder Series MY3A/3B

Side Support

Guide for Using Side Support

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right.

A Caution

- If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

MY-S40 B MY3A63, MY3B63

160 182

55

80

14.8

Guide for Using MY3B Side Support

8.5

14

9

M10 x 1.5

Floating Bracket

Facilitates connection to other guide systems.

Application

Mounting Example

MY3 Floating Bracket Mounting Dimensions

	Applicable			Com	mon			Adjustin	ig range
Model	cylinder	G	Н	JJ	L	Р	LD	Ea	Eb
MYAJ16	MY3□16	38	20	M4 x 0.7	4.5	10	6	1	1
MYAJ25	MY3□25	55	22	M6 x1	5.5	12	9.5	1	1
MYAJ40	MY3□40	72	32	M8 x1.25	6.5	16	11	1	1
MYAJ63	MY3□63	100	40	M10 x1.5	9	19	14	1	1
Model	Applicable		1	Mou	nting directio	n U			
model	cylinder	A 1	B 1	C1	D1	F 1	K 1	Q1	
MYAJ16	MY3□16	29	68	34	18	88	5.5	10	
MYAJ25	MY3□25	38.5	90	45	24	112	6.5	11	
MYAJ40	MY3□40	56	130	65	32	162	9.5	16	
MYAJ63	MY3□63	86	186	93	50	226	10	20	
Model	Applicable			Mou	nting directio	n (2)			
Model	cylinder	A 2	B2	C2	D 2	F2	K2	Q2	
MYAJ16	MY3□16	36	58	29	30	68	10	5	
MYAJ25	MY3□25	46	80	40	40	92	14	6	
MYAJ40	MY3□40	68	114	57	55	130	19	8	
MYAJ63	MY3□63	100	166	83	80	185	23	9.5	

Installation of holding bolt

Application

(mm)

Unit: N·m

Tighting torque

5

13

Model

MYAJ40

MYAJ63

Tighting torque

3

1.5

MX

MTS

MY

D-

Mechanically Jointed Rodless Cylinder Series MY3A/3B

Proper Auto Switch Mounting Position (Detection at stroke end)

Note) The operating ranges are provided as guidelines including the hystere-sis and are not guaranteed values (with approx. ±30% variations). They may vary significantly with the surrounding environment.

MY3A

D-A9, D-	-A9⊡V		(mm)
Bore size	A	В	Operating range
16	22	88	6.5
25	29	121	10.5
40	42.5	197.5	15
63	53.5	266.5	14

D-F9□W, D-F9□(W)V (mm											
Bore size	Α	В	Operating range								
16	26	84	3.0								
25	33	117	4.5								
40	46.5	193.5	6.3								
63	57.5	262.5	6.6								

MY3B

D-A9, D-	-A9⊡V		(mm)
Bore size	Α	В	Operating range
16	28	94	6.5
25	43	135	10.5
40	60.5	215.5	15
63	71.5	284.5	14

D-F9W , D-F9(W)(mm)						
Bore size	Α	В	Operating range			
16	32	90	3.0			
25	47	131	4.5			
40	64.5	211.5	6.3			
63	75.5	280.5	6.6			

(mm)	/	D-M9□\	D-M9□,
Operating range	В	Α	Bore size
2	84	26	16
3	117	33	25
4	193.5	46.5	40
4.5	262.5	57.5	63

D-M9□,	D-M9□\	/	(mm)	-X
Bore size	Α	В	Operating range	
16	32	90	2	20-
25	47	131	3	
40	64.5	211.5	4	Data
63	75.5	280.5	4.5	

Mounting of Auto Switch

When mounting an auto switch, first hold the switch spacer with your fingers and push it into the groove. Confirm that it is aligned evenly within the groove and adjust the position if necessary (see below). Then, insert the auto switch into the groove and slide it into the spacer (refer to the drawing at right).

After deciding on the mounting position within the groove, slip in the mounting screw, which is included, and tighten it, using a flat head watchmakers' screwdriver.

6 0 0 C 0 Note) Use a watchmakers' screwdriver 0 with a handle diameter of 5 to 6 0 mm to fasten the auto switch 0 mounting screws. The tightening torque should be approximately 0.05 to 0.1 N·m. The guideline is a 90° rotation after the fastening is felt. DID Switch spacer (BMY3-016) Switch mounting screw (M2.5 x 41)

Accessories Flat head watchmakers' screwdriver

(mm)

Switch Spacer

Applicable bore size (mm)	16	25	40	63
Switch spacer		BMY3	3-016	

L.	Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted.							
L	For detailed specifications, refer to page 8-30-1.							

1	Туре	Model	Lead wire electrical entry	Features	
÷	Decidentification	D-A90	Grommet (In-line)	Without	
1	Heed switch	D-A90V	Grommet (Perpendicular)	indicator light	
i.	The normally closed type	(NC = b contact)	solid state switches (D-F9	G/F9H) are also	available. For detailed information, please consult with SMC.

Series MY3A/3B Made to Order Specifications 1 Please contact with SMC for further information on specifications, dimensions and delivery.

Made to Order Combinations

		Long stroke	Helical insert threads	Holder mounting bracket
		XB11	X168	X416/X417
МҮЗА	Short type	•	•	—
MY3B	Basic type	•	•	

Available with long strokes exceeding the standard strokes. The stroke can be set in 1 mm increments.

■ Stroke range: 2001 to 3000 mm

(Example) MY3A40-2700-F9B-XB11

The mounting threads of the slider are changed to helical insert threads. The thread size is the same as standard.

(Example) MY3B16-300L-F9B-X168

Symbol 3 -X416/X417 (2)

Holder mounting brackets are used to fasten the stroke adjusting unit at an intermediate stroke position.

Fine Stroke Adjustment Range

(Treated as a special order when exceeding the adjustment ranges shown below.) Unit: mm

Bore		X416 (one side)	-X417 (one side)		
size	Spacer	Adjustment range	Spacer	Adjustment range	
(mm)	Length (ℓ)	MY3B	Length (l)	MY3B	
16	10	-10 to -20	20	-20 to -30	
25	12	-12 to -24	24	-24 to -36	
40	16	-16 to -32	32	-32 to -48	
63	24	-24 to -48	48	-48 to -72	

Series MY3A/3B Made to Order Specifications 2 Please contact with SMC for further information on specifications, dimensions and delivery.

3 Holder Mounting Bracket ·····

MY3B stroke adjustment range

Symbol

-X416/X417

	Holder	Mounting pcs.		ng pcs.	Combination departmention	
Stroke adjusting unit	bracket	Symbol	X416	X417	Combination description	
L, H, LS, SL, HS, SH		Nil	1		X416 on one side * Note 2)	
L, H	X416	w	2		X416 on both sides	
		Z	1	1	X416 on one side, X417 on the other side * Note 2)	
		L	1		X416 on L unit side	
		н	1		X416 on H unit side	
		LZ	1	1	X416 on L unit side, X417 on the other side	
		HZ	1	1	X416 on H unit side, X417 on the other side	
L, H, LS, SL, HS, SH		Nil		1	X417 on one side * Note 2)	
L, H LH, HL	X417 <u>W</u> L	w		2	X417 on both sides	
		L		1	X417 on L unit side	
		н		1	X417 on H unit side	

Note 1) For LS, SL, HS and SH, the stroke adjusting unit is mounted on one side only.

Note 2) The stroke adjusting unit is installed on the left side (or right side in case of SL and SH) at the time of shipment. It can however be moved to the right side (or left side).

Example

• L units with one each of X416 and X417 MY3B25-300L-X416Z

• L and H units, where X417 is mounted on L unit only and nothing on H unit

MY3B25-300LH-X417L

• How to order single pieces of stroke adjusting unit

MY3B-A16L1 - X417

Holder mounting bracket X416 Holder mounting bracket 1 **X417** Holder mounting bracket 2

Stroke adjusting unit model Note) Refer to the options table of "How to Order" for each series. **MY3B** → Page 8-14-15

Example) MY3B25-A25L1-X416 (X416 bracket for left side L unit of MY3B25)

Example

• How to order single pieces of holder mounting bracket

Note) The holder mounting bracket can be commonly used on the L and H units as well as the left and right sides.

Example) MY3B25-A25-X416N

(X416 bracket for L and H units of MY3B)

SMC

Specific Product Precautions 1

Be sure to read before handing.

Handling

ACaution

1. Use caution not to have your hands caught in the unit.

When using a cylinder with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit is very narrow. Care should be taken to avoid the danger of hands being caught in this small space. Install a protective cover to prevent the risk of accidents to the human body.

2. Use an external guide (MY3B).

The stroke adjusting unit must be used on condition that an external guide is used. If a stroke adjusting unit is used where the cylinder is used alone, the collision reaction may cause damage to the cylinder.

3. Conduct stroke adjustment with an adjustment bolt as follows:

The adjustment bolt should be secured on the same surface as the shock absorber after stroke adjustment.

If the stopper surface of the shock absorber and the end surface of the adjustment bolt are not on the same level, it may result in an unstable stop position of the slide table or reduced durability.

4. Securing the unit body

<MY3B>

Tighten the four unit fixing bolts equally to secure the unit body.

5. Do not fix and use the stroke adjusting unit at an intermediate position (MY3B).

If the stroke adjusting unit is fixed at an intermediate position, an error may result depending on the collision energy. In that case, the use of the holder mounting bracket for adjustment is recommended. It is provided with the "-X416" or "-X417" made-to-order specification.

(Refer to the tightening torque for the stroke adjusting unit fixing bolt.)

If the stroke adjusting unit is used at an intermediate position, the energy absorption capacity may be different. Refer to the maximum absorbed energy on page 8-14-15 and operate within the allowable absorption energy.

<Stroke adjustment with adjustment bolt>

Loosen the lock nut for the adjustment bolt, adjust the stroke on the head cover side with a hexagon wrench, and secure with a lock nut.

<Stroke adjustment with shock absorber>

Loosen the two unit fixing bolts on the shock absorber side and rotate the shock absorber for stroke adjustment. Tighten the unit fixing bolts equally to secure the shock absorber (MY3B). Use caution not to overtighten the fixing bolts. (Befer to the tightening torque for the MY3B stroke adjusting

(Refer to the tightening torque for the MY3B stroke adjusting unit fixing bolt.)

MY3B stroke adjusting unit

(N⋅m)

Bore size (mm)	Unit	Tightening torque				
16	L	0.6				
10	Н	0.0				
95	L	0.0				
25	Н	3.0				
40	L	10				
40	Н	12				
60	L	04				
63	Н	24				

Caution Centralized Piping Port Variations

 Head cover piping connection can be freely selected to best suit different piping conditions.

