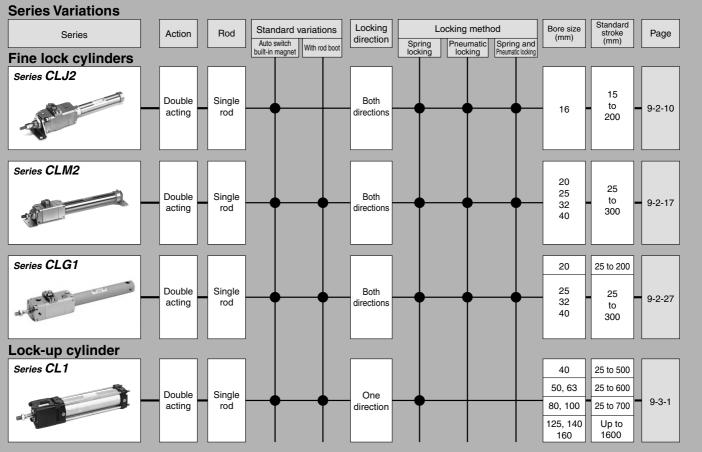


Fine Lock Cylinders Lock-up Cylinder

Series CL


ø16, ø20, ø25, ø32, ø40, ø50 ø63, ø80, ø100, ø125, ø140, ø160

Locking	Spring	Pneumatic	Spring and pneumatic locking
method	locking	locking	
Features	• Unlocking Discharging the air causes the lock to operate.	• Pressure locking The holding power can be varied according to the air pressure that is applied to the port.	 Pressure locking The holding power can be varied according to the air pressure that is applied to the port. Unlocking Discharging the air causes the lock to operate.

Locking in both directions is possible. Locking in either side of cylinder stroke is possible, too.

(The lock-up cylinder can be locked only in one direction.)

Maximum piston speed: 500 mm/s It can be used at 50 to 500 mm/s provided that it is within the allowable kinetic energy range. (The lock-up cylinder can operate at 50 to 200 mm/s.)

CL CL1 MLGC CNG **MNB** CNA CNS CLS CLQ MLGP RLQ MLU ML1C D--X 20-Data

Fine Lock Cylinders/Lock-up Cylinder **Precautions**

The precautions on these pages are for the fine lock cylinders and the lock-up cylinders. For general actuator precautions, refer to Actuator Precautions on pages 9-19-3 to 9-19-6.

Design of Equipment and Machinery

🗥 Warning

- Construct so that the human body will not come into direct contact with driven objects or the moving parts of locking cylinders. If there is a risk of contact, provide safety measures such as a cover or a system that uses sensors that will activate an emergency stop before contact is made.
- 2. Use a balance circuit in which lurching of the piston is taken into consideration. If the lock is applied at a desired position of a stroke and compressed air is applied to only one side of the cylinder, the piston will lurch at a high speed the moment the lock is disengaged. In such a situation, there is a risk of injury to humans, or equipment damage. To prevent the piston from lurching, use a balance circuit such as the recommended pneumatic circuit (P. 9-2-6). If an air-hydro fine lock cylinder is used, make sure to operate the lock portion through air pressure. Never use oil on the lock-up cylinder because the lock-up cylinder is a non-lube style. Failure to observe this could cause the lock to malfunction

Selection

\land Warning

Refer to the following criteria for the maximum load in the locked state, and set.

When a cylinder is in a no-load and locked state, the holding force (maximum static load) is the lock's ability to hold a static load that does not involve vibrations or shocks. To ensure braking force, the maximum load must be set as described below.

- 1. For constant static loads, such as for drop prevention:
- Fine lock series (Series CLJ2/CLM2/ CLG1)

35% or less of the holding force (maximum static load)

Note) For applications such as drop prevention, consider situations in which the air source is shut off, and make selections based on the holding force of the spring locked state. Do not use the pneumatic lock for drop prevention purposes.

Lock-up series (Series CL1)

50% or less of the holding force (maximum static load)

2. When kinetic energy acts upon the cylinder, such as when effecting an intermediate stop, there are constraints in terms of the allowable kinetic energy that

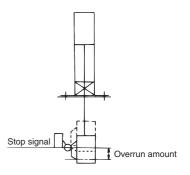
can be applied to the cylinder in a locked state. Therefore, refer to the allowable kinetic energy of the respective series. Furthermore, during locking, the mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the kinetic energy. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the amount of the load that can be sustained.

 Fine lock series (Series CLJ2/CLM2/ CLG1)

Maximum load at horizontal mounting: 70% or less of the holding force (Maximum static load) for spring lock Maximum load at vertical mounting: 35% or less of the holding force (Maximum static load) for spring lock Lock-up series (Series CL1)

- Maximum load at horizontal mounting: 50% or less of the holding force (Maximum static load) Maximum load at vertical mounting: 25% or less of the holding force (Maximum static load)
- **3.** In a locked state, do not apply impacts, strong vibrations or rotational forces.
- Do not apply a impacts, strong vibrations or rotational forces from external sources, because this could damage or shorten the life of the lock unit.
- 4. The locking of the fine lock cylinder is directional.

Although the fine lock cylinder can be locked in both directions, be aware that its holding force is smaller in one of the directions. CLJ2/CLM2/CLG1···· Holding force at piston rod extended side decreases approx. 15%.


 The locking of the lock-up cylinder is unidirectional.
 Because the locking direction of the lock-up

Because the locking direction of the lock-up cylinder is unidirectional, select the locking direction in accordance with the particular operating conditions. It is also possible to manufacture a bidirectional lock-up cylinder. For details, refer to "Made to Order" on page 9-6-113. Due to the nature of its construction, a lock-up cylinder has a play of approximately 0.5 mm to 1 mm in the axial direction. Therefore, if an external stopper is used to stop the piston rod and the lock is engaged, the piston rod will shift in the amount of its axial play.

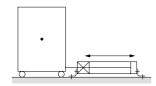
 To effect an intermediate stop, take the cylinder's stopping precision and overrun amount into consideration.
 Because the lock is applied by mechanical

Because the lock is applied by mechanical means, the piston will not stop immediately in response to a stopping signal, but only after a time lag. This lag determines the amount of the overrun of the piston stroke. Thus, the range of the maximum and minimum amounts of the overrun is the stopping precision.

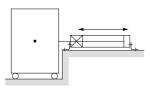
- Place the limit switch before the desired stopping position, only in the amount of the overrun.
- The limit switch must have a detection length (dog length) of the overrun amount + α .
- For SMC's auto switches, the operating range are between 8 and 14 mm. (It varies depending on a switch model.) When the overrun amount exceeds this range, self-holding of the contact should be performed at the switch load side.
- * For stopping accuracy, refer to Series CLJ (P. 9-2-12), Series CLM2 (P. 9-2-20), Series CLG1 (P. 9-2-30), and Series CL1 (P. 9-3-2) respectively.
- 7. In order to further improve stopping accuracy, the time from the stop signal to the operation of the lock should be shortened as much as possible. To accomplish this, use a device such as a highly responsive electric control circuit or solenoid valve driven by direct current, and place the solenoid valve as close as
- possible to the cylinder.
 8. Be aware that the stopping accuracy is influenced by changes in the piston speed. The variance in the stopping position increases if the piston speed changes, such as due to load fluctuations during the reciprocal movement of the piston. Therefore, take measures to ensure a constant piston speed immediately preceding the stopping position. Furthermore, the variances in the stopping position increases when the piston is effecting a cushioning stroke or during acceleration after starting its movement.
- 9. When unlocking is performed, if the thrust is applied to the piston, unlocking will not be easily done. To avoid that, ensure that unlocking should be performed before the thrust is applied to the piston.

Series CL

Mounting


\land Warning

1. Be certain to connect the rod end to the load with the lock released.


 If this is performed with the lock engaged, a load that exceeds the allowable rotational force or holding force would be applied to the piston rod, which could damage the locking mechanism. The fine lock and Series CL1 with ø40 to ø100 cylinders have a built-in manual unlocking mechanism. Therefore, they can be maintained in the unlocked state without supplying air. For Series CL1 with ø125 to ø160 cylinders, simply connect piping to the lock-up port, and supply air pressure of 0.2 MPa or more to disengage the lock in order to attach a load.

ACaution

- 1. Do not apply offset loads on the piston rod.
 - Pay particular attention to aligning the center of gravity of the load with the axial center of the cylinder. If there is a large amount of deviation, the piston rod could become unevenly worn or damaged due to the inertial moment that is created when the piston rod is stopped by the lock.

X Load center of gravity and cylinder shaft center are not matched.

 Load center of gravity and cylinder shaft center are matched.

Note) Can be used if all of the generated moment is absorbed by an effective guide.

Adjustment

\land Caution

- 1. Place it in the locked position. (Excluding the series CL1 ø125 to ø160.)
 - The locks are manually disengaged at the time the cylinders are shipped from the factory. Therefore, make sure to change them to the locked state before using the cylinders. For procedures to effect the change, refer to page 9-2-7 for the fine lock series. Be aware that the lock will not operate properly if the change is not performed correctly.
 - Adjust the cylinder's air balance. In the state in which a load is attached to the cylinder, disengage the lock and adjust the air pressure at the rod side and the head side of the cylinder to obtain a load balance. By maintaining a proper air balance, the piston rod can be prevented from lurching when the lock is disengaged.
- 2. Adjust the mounting position of detections such as those of the auto switches. To effect an intermediate stop, adjust the mounting position of the auto switch detection by taking the amount of overrun into consideration in relation to the desired stopping position.

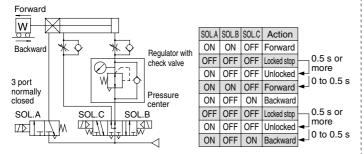
Pneumatic Circuit

\land Warning

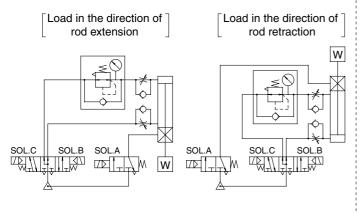
1. Be certain to use an pneumatic circuit which will apply balancing pressure to both sides of the piston when in a locked stop.

In order to prevent cylinder lurching after a lock stop, when restarting or when manually unlocking, a circuit should be used to which will apply balancing pressure to both sides of the piston, thereby canceling the force generated by the load in the direction of piston movement.

2. Use a solenoid valve for unlocking which has a large effective area, as a rule 50% or more of the effective area of the cylinder drive solenoid valve.

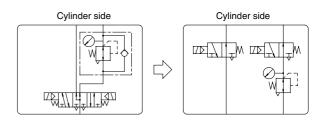

The larger the effective area is, the shorter the locking time will be (the overrun amount will be shorter), and stopping accuracy will be improved.

- 3. Place the solenoid valve for unlocking close to the cylinder, and no farther than the cylinder drive solenoid valve. The shorter the distance from the cylinder (the shorter the piping), the shorter the overrun amount will be, and stopping accuracy will be improved.
- 4. Allow at least 0.5 seconds from a locked stop (intermediate stop of the cylinder) until release of the lock. When the locked stop time is too short, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.
- 5. When restarting, control the switching signal for the unlocking solenoid valve so that it acts before or at the same time as the cylinder drive solenoid valve.

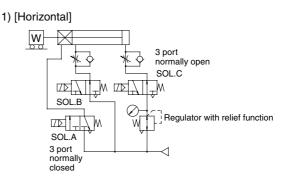

If the signal is delayed, the piston rod (and load) may lurch at a speed greater than the control speed of the speed controller.

6. Basic circuit

1) [Horizontal]



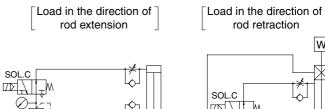
2) [Vertical]

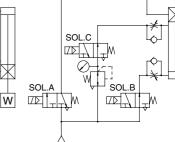


A Caution

A 3 position pressure center solenoid valve and regulator with 1. check valve can be replaced with two 3 port normally open valves and a regulator with relief function.

[Example]


2) [Vertical]


SOL.B

_W

SOL

W

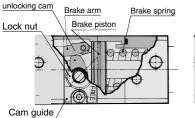
W

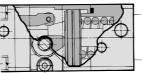
How to Manually Disengage the Lock and Change from the Unlocked to the Locked State

The lock is manually disengaged at the time the cylinder is shipped from the factory. Because the lock will not operate in this state, make sure to change it to the locked state before operation, after having adjusted the axial center for installation.

How to Change from Unlocked to Locked State

1. Series CLJ2, CLM2, CLG1


1) Loose locking nut.


Manual

- 2) Turn the wrench flats section of the manual unlocking cam to the LOCK position that is marked on the cam guide.
- 3) While keeping the wrench flats section in place, tighten the lock nut.
- Note) The manual unlocking cam will rotate approximately 180°. Do not rotate the wrench flats section excessively.

Locked state

Manually unlocked state

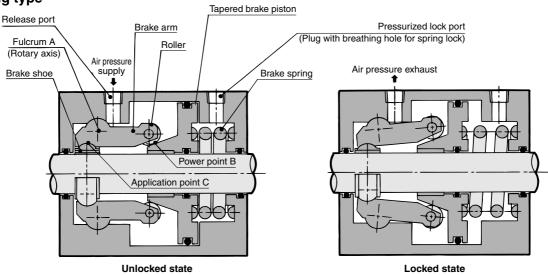
"LOCK" and "FREE" are marked on the cam guide.

Manually Unlocking

The lock of a fine lock series cylinder can be disengaged manually through the procedure described below. However, make sure to disengage the lock pneumatically before operating the cylinder.

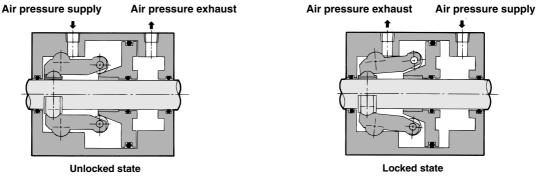
Note) Manual disengagement of the lock could create a greater cylinder sliding resistance than pneumatic disengagement of the lock.

1. Series CLJ2, CLM2, CLG1

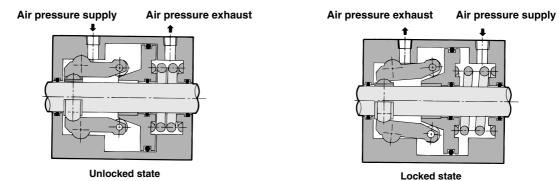

- Loose locking nut.
- 2) Supply air pressure of 0.3 MPa or more to the lock release port.
- Turn the wrench flats section of the manual unlocking cam until it stops at the FREE position that is marked on the cam guide.
- 4) While keeping the wrench flats section in place, tighten the lock nut.

Before Operation

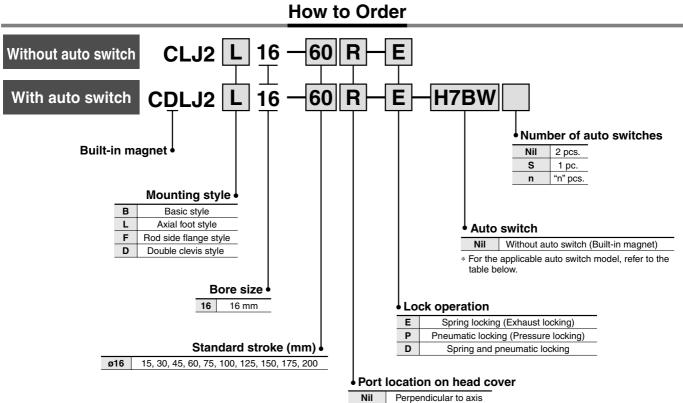
Construction Principle/Applicable Series: CLJ2, CLM2, CLG1, MLGC


Spring locking type

Spring locking (Exhaust locking)


The spring force that is applied to the tapered brake piston becomes amplified through the wedge effect. This force becomes further amplified to the power of AB/AC through the mechanical advantage of a lever and acts on the brake shoe, which in turn, applies a large force to tighten and lock the piston rod. To disengage the lock, air pressure is supplied through the unlocking port, thus disengaging the brake spring force.

Pneumatic locking type



Brake piston is operated by air pressure.

Spring and pneumatic locking type

Brake piston is operated by air pressure and spring force.

Axial direction R

Applicable Auto Switch/Refer to page 9-15-1 for further information on auto switches.

		Els strissel	tor	M/ining at	L	oad volta	age	Auto switch	Lead wire length (m)*			Dea suine	Applicable											
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)		DC	AC	model	0.5 (Nil)	3 (L)	5 (Z)	None (N)	Pre-wire connector		ad									
tch		Grommet		3-wire (NPN equivalent)	_	5 V	_	C76	•	•	_	_	_	IC circuit	_									
Reed switch	_	Gronniet	Yes		12 V	100 V	C73	•	•	•	_	—		Relay,										
Rec		Connector		2-wire	24 V	+ V 12 V	_	C73C	•	•	•	•	_	- PL	PLC									
				3-wire (NPN) 3-wire (PNP)				H7A1			0	_	0	IC										
		Grommet			5 V, 12 V	H	H7A2	•		0	—	0	circuit											
tc	—	Connector	2-wire		1011	1011]	H7B			0	—	0											
świ	Conn			2-wire		12 V		H7C					_	_										
state switch	Die weestie in die stien		Yes	3-wire (NPN)	24 V	= 14 40 14]	H7NW			0	—	0	IC	Relay,									
sta	Diagnostic indication (2-color indication)		≫	3-wire (PNP)	5 V,	24 V 5 V, 12 V	5 V, 12 V		H7PW			0	—	0	circuit PL	PLC								
Solid		Grommet	Grommet		2-wire				. ,]	H7BW			0	—	0		
So	Water resistant (2-color indication)	Cioninet		2-1		12 V		H7BA	_	•	0	_	0	—										
	With diagnostic output (2-color indication)			4-wire (NPN)	1	5 V, 12 V	1	H7NF		•	0	—	0	IC circuit										
* Lea	* Lead wire length symbols: 0.5 mNil (Example) C73C * Solid state switches marked with "O" are produced upon receipt of order.																							

* Lead wire length symbols: 0.5 m ·······Nil (Example) C73C

1 mL (Example) C73CL

5 m ······Z (Example) C73CZ

None ······N (Example) C73CN

• Since there are other applicable auto switches than listed, refer to page 9-2-16 for details.

· For details about auto switches with pre-wire connector, refer to page 9-15-66.

CL

CL1

MLGC

CNG

MNB

CNA

CNS

CLS

CLQ

MLGP

RLQ

MLU

ML1C

D-

-X

20-

Data

Fine Lock Cylinder Double Acting, Single Rod Series CLJ2

Provided with a compact lock mechanism, it is suitable for intermediate stop, emergency stop, and drop prevention.

Locking in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed: 500 mm/s

It can be used at 50 to 500 mm/s provided that it is within the allowable kinetic energy range.

Made to Order Specifications Order (For details, refer to page 9-16-1.)
--

	Symbol	Specifications
-XA🗆		Change of rod end shape

Specifications

Bore size (mm)	16	
Action	Double acting, Single rod	
Туре	Non-lube/Lube	
Lock operation	Spring locking (Exhaust locking) Pneumatic locking (Pressure locking) Spring and pneumatic locking	
Fluid	Air	
Proof pressure	1.05 MPa	
Maximum operating pressure	0.7 MPa	
Minimum operating pressure	0.08 MPa	
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing) With auto switch: -10 to 60°C (No freezing)	
Piston speed	50 to 500 mm/s *	
Cushion	Rubber bumper	
Thread tolerance	JIS Class 2	
Stroke length tolerance	+1.0 0	
Mounting	Basic style, Axial foot style, Rod side flange style, Double clevis style	

Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. The maximum speed of 750 mm/s can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Fine Lock Specifications

Lock operation	Spring locking (Exhaust locking)	Spring and pneumatic locking	Pneumatic locking (Pressure locking)		
Fluid	Air				
Maximum operating pressure	0.5 MPa				
Unlocking pressure	0.3 MPa or more		0.1 MPa or more		
Lock starting pressure	0.25 MP	0.05 MPa or more			
Locking direction	Both directions				

Standard Stroke

Bore size (mm)	Standard stroke	
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200	

Mounting Bracket and Accessory/For details, refer to page 9-2-16.

	Mounting	Basic style	Axial foot style	Rod side flange style	Double clevis style
rd ent	Mounting nut		•	•	—
Standard equipment	Rod end nut		•	•	•
Ste equ	Clevis pin	_	_	_	•
_	Single knuckle joint		•	•	•
Option	Double knuckle (With pin)		•	•	
0	T-bracket	_	_	_	

Mounting Bracket Part No.

Mounting bracket	Part no.	
Foot	CLJ-L016B	
Flange	CLJ-F016B	
T-bracket *	CJ-T016B	

* T-bracket is used with double clevis (D).

Auto Switch Mounting Bracket Part No.

Auto switch mounting bracket no.	Note
BJ2-016	For D-C7/C8/H7

Mounting screws set made of stainless steel
 The following set of mounting screws made of

stainless steel is also available. Use it in accordance with the operating environment. (A switch mounting band is not included, so place order it searcately.)

please order it separately.) BBA4: For D-C7/C8/H7

"D-H7BAL" switch is set on the cylinder with the stainless steel screws above when shipped. When only a switch is shipped independently, "BBA4" screws are attached.

Series CLJ2

Minimum Stroke for Auto Switch Mounting

Auto switch mounting style	Auto switch model	No. of auto switches mounted	Minimum cylinder stroke (mm)
		2 (Same side)	50
	D-C7⊡ D-C80	2 (Different sides)	15
		1	10
	D-H7□	2 (Same side)	60
Band mounting style	D-H7⊡W D-H7NF D-H7BAL	2 (Different sides)	15
		1	10
	D-C73C	2 (Same side)	65
	D-C80C D-H7C	2 (Different sides)	15
		1	10

Weight

	16	
Standard weight	320	
Additional weight	6.5	
	Axial foot style	27
Mounting bracket weight	Rod side flange style	21
	Double clevis style (With pin) **	10

* Mounting nut and rod end nut are included in the basic weight.

** Mounting nut is not included in double clevis style.

Calculation: (Example) CLJ2L16-60

- Basic weight-------320 (ø16)
 - Additional weight6.5/15 stroke
 - Cylinder stroke60 stroke
 - 320 + 6.5/15 x 60 + 27 = 373 g

Stopping Accuracy (Not including tolerance of control system.) (mm)

Look tupo	Piston speed (mm/s)					
Lock type	50	100	300	500		
Spring locking (Exhaust locking)	±0.4	±0.5	±1.0	±2.0		
Pneumatic locking (Pressure locking) Spring and pneumatic locking	±0.2	±0.3	±0.5	±1.5		

Condition: Load: 2 kg

Solenoid valve: Lock port mounting

Port Location on Head Cover

Either perpendicular to the cylinder axis or in-line with the cylinder axis is available for basic style.

Perpendicular

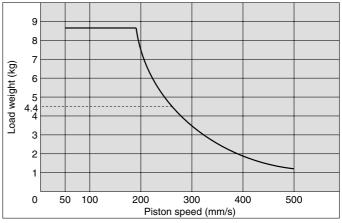
Axia

A Caution

Recommended Pneumatic Circuit/Caution on Handling

For detailed specifications of the fine lock cylinder, Series	- 1
CLJ2 mentioned above, refer to pages 9-2-4 to 9-2-7.	

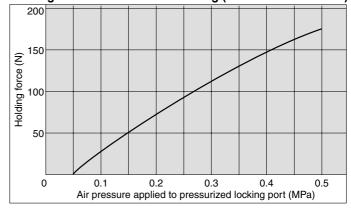
🗥 Caution/Allowable Kinetic Energy when Locking


Bore size (mm)	16
Allowable kinetic energy (J)	0.17
In terms of specific load conditions, this a	allowable kinetic energy is

1. equivalent to a load of 3.7 kg in weight, and a piston speed of 300 mm/sec. Therefore, if the operating conditions are below these values, there is no need to calculate

- 2. Apply the following formula to obtain the kinetic energy of the load. Ek: Kinetic energy of load (J)
 - $Ek = \frac{1}{2}mv^2$

(a)


- $Ek = \frac{1}{2}mv^2$ m: Load weight (kg) v: Piston speed (m/s) 3. The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.2 times the average speed as a guide.
- 4. The relationship between the speed and the load is indicated in the graph below. The area below the line is the allowable kinetic energy range.
- 5. During locking, the lock mechanism must sustain the thrust of the cylinder, in addition to absorbing the energy of the load. Therefore, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

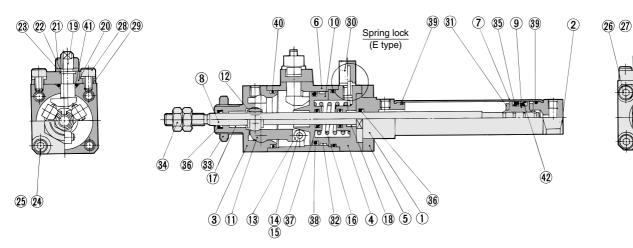
Holding Force of Spring Locking (Maximum static load)

Bore size (mm)	16			
Holding force (N)	122			
Note) Holding force at piston rod extended side decreases approximately 15%.				

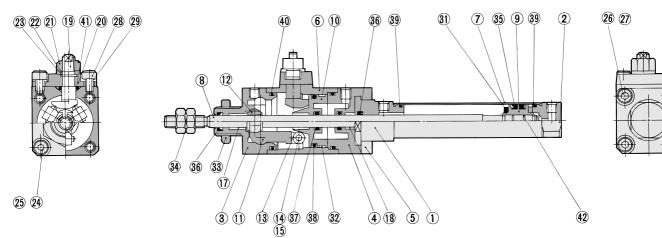
Holding Force of Pneumatic Locking (Maximum static load)

A Caution

Caution when Locking

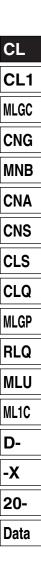

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- . Do not use the cylinder in the locked state to sustain a load that involves impact.



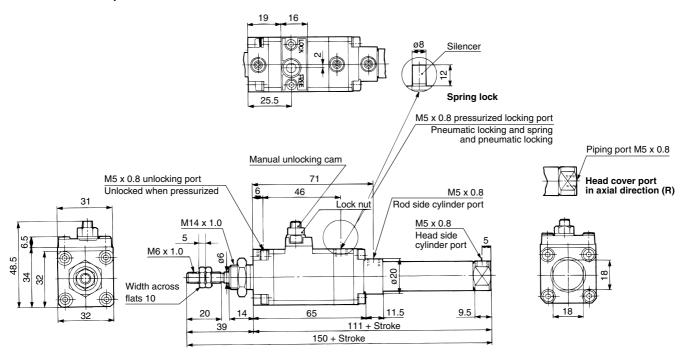
Construction (Not able to disassemble.)

Spring locking (Exhaust locking) Spring and pneumatic locking

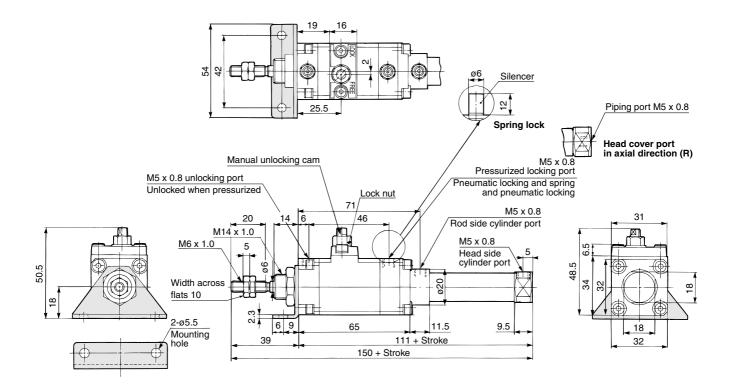

Pneumatic locking (Pressure locking)

Component Parts

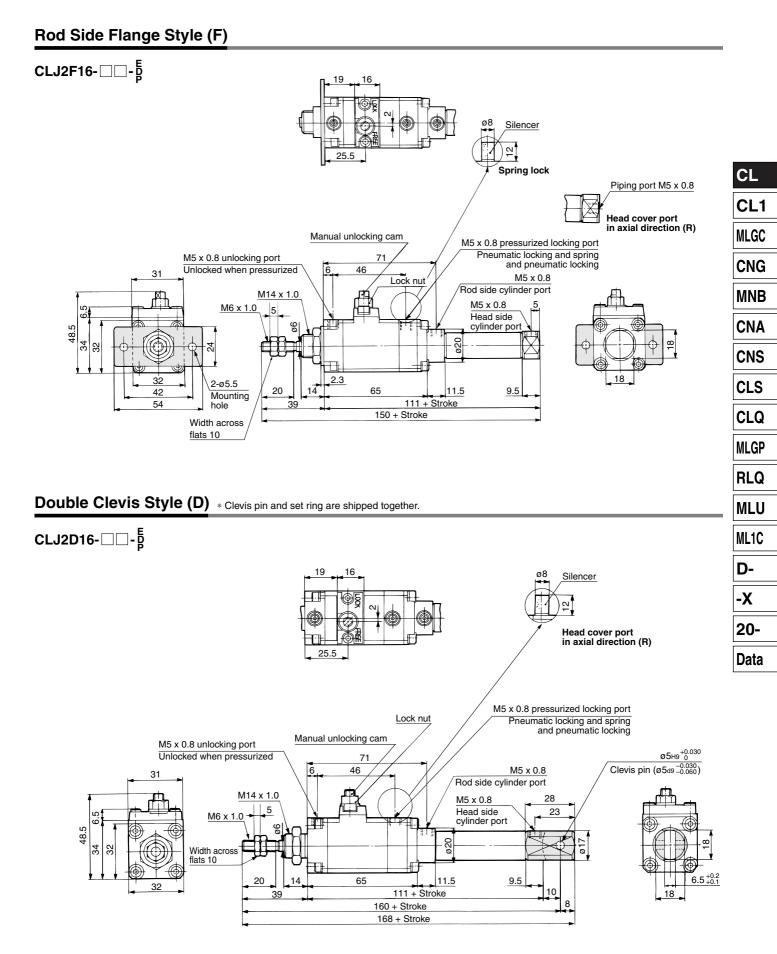
No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cover A	Carbon steel	Nitrided, nickel chrome plated
(4)	Cover B	Aluminum alloy	Hard anodized
(5)	Cover C	Aluminum alloy	Hard anodized
6	Intermediate cover	Aluminum alloy	Hard anodized
7	Cylinder tube	Stainless steel	
8	Piston rod	Stainless steel	Hard chrome plated
9	Piston	Brass	
10	Brake piston	Carbon steel	Nitrided
11	Brake arm	Carbon steel	Nitrided
12	Brake shoe	Special friction material	
(13)	Roller	Carbon steel	Nitrided
14	Pin	Carbon steel	Heat treated
(15)	Snap ring	Carbon tool steel	Nickel plated
16	Brake spring	Steel wire	Zinc chromated
17	Bushing A	Oil-impregnated sintered alloy	
18	Bushing B	Oil-impregnated sintered alloy	
(19	Manual lock release cam	Chromium molybdenum steel	Nitrided
20	Cam guide	Carbon steel	Nitrided, platinum silver painted
21	Lock nut	Rolled steel	Nickel plated


No.	Description	Material	Note
22	Plain washer	Rolled steel	Nickel plated
23	Snap ring	Carbon tool steel	Nickel plated
24	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
25	Spring washer	Steel wire	Nickel plated
26	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
27	Spring washer	Steel wire	Nickel plated
28	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
29	Spring washer	Steel wire	Nickel plated
30	Silencer	Bronze	Type E only
31)	Bumper	Urethane	
32	Wear ring	Resin	
33	Mounting nut	Brass	Nickel plated
34)	Rod end nut	Rolled steel	Nickel plated
35	Piston seal	NBR	
36	Rod seal A	NBR	
37	Rod seal B	NBR	
38	Brake piston seal	NBR	
39	Cylinder tube gasket	NBR	
(40)	Intermediate cover gasket	NBR	
(41)	Cam gasket	NBR	
(42)	Piston gasket	NBR	

Series CLJ2

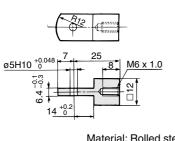

Basic Style (B)

CLJ2B16-□□-┣

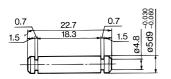


Axial Foot Style (L)

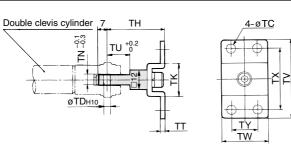
CLJ2L16-□□-┣


Fine Lock Cylinder Double Acting, Single Rod Series CLJ2

14


Accessory Bracket Dimensions

Single Knuckle Joint: I-LJ016B

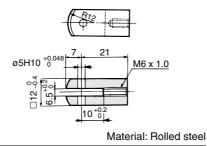

Material: Rolled steel

Clevis Pin: CD-Z015

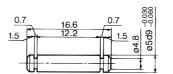
Material: Stainless steel

T-bracket: CJ-T016B

									Mat	erial: I	Rollec	steel
Part no.	Bore size (mm)	тс	TD H10	TH	ТК	ΤN	TT	ΤU	тν	ΤW	ΤХ	ТΥ
CJ-T016B	16	5.5	5 ^{+0.048}	35	20	6.4	2.3	14	48	28	38	16


Regarding the installation position and the mounting height of the auto switch, refer to page of Series CDJ2 air cylinder (Double acting, Single rod), since the dimensions are the same.

Note) Applicable auto switches for Fine lock cylinder Series CLJ2 are the band mounting style only.

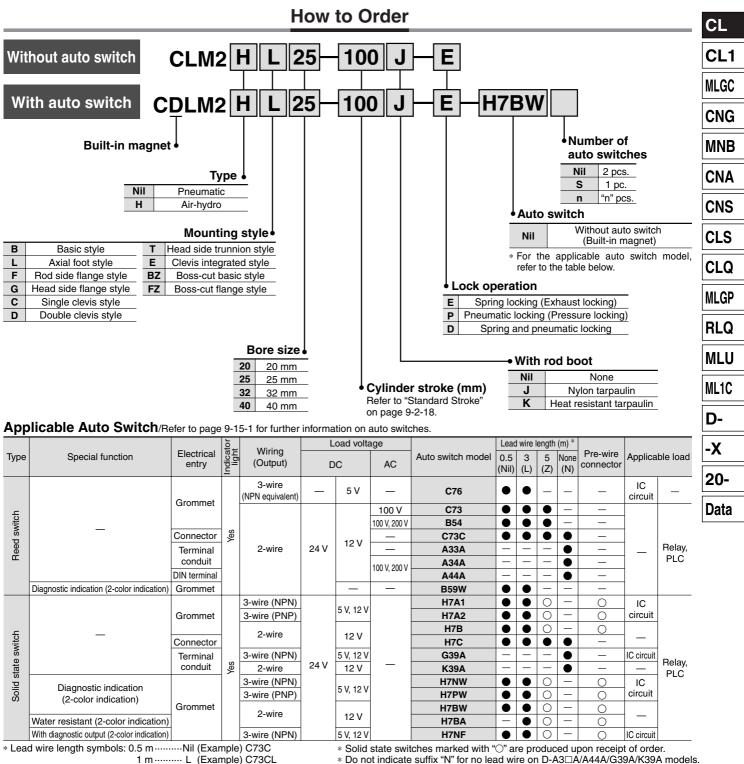

Use care that auto switch for rail mounting style is not available.

Double Knuckle Joint: Y-LJ016B Rod End Nut: NT-015A

* Knuckle pin and snap ring are shipped together.

Knuckle Pin: IY-J015A

Mounting Nut: SNLJ-016B


<u>M6 x 1.0</u>

Material: Brass

Material: Rolled steel

Material: Stainless steel

Fine Lock Cylinder Double Acting, Single Rod Series CLM2 ø20, ø25, ø32, ø40

⁵ m Z (Example) C73CZ

None N (Example) C73CN

Since there are other applicable auto switches than listed, refer to page 9-2-20 for details.

· For details about auto switches with pre-wire connector, refer to page 9-15-66.

15

SMC

Provided with a compact lock mechanism, it is suitable for intermediate stop, emergency stop, and drop prevention.

Locking in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Maximum piston speed: 500 mm/s

It can be used at 50 to 500 mm/s provided that it is within the allowable kinetic energy range.

Made to Order Specifications (For details, refer to page 7-16-1.)

Symbol	Specifications
-XA🗆	Change of rod end shape

Specifications

Bore size (mm)	20	25	32	40			
Action	20	Double acting, Single rod					
Туре		Air cy	linder				
Lock operation	Pneumatic lockin	Spring locking (E g (Pressurized lock		oneumatic locking			
Fluid		A	ir				
Proof pressure	1.5 MPa						
Maximum operating pressure	1.0 MPa						
Minimum operating pressure	0.08 MPa						
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing) With auto switch: -10 to 60°C (No freezing)						
Lubrication	Not required (Non-lube)						
Piston speed	50 to 500 mm/s *						
Thread tolerance	JIS Class 2						
Stroke length tolerance	+1.4						
Piping/Screw-in type	Rc 1/8 Rc 1/4						
Mounting	Basic style, Axial foot style, Rod side flange style, Head side flange style, Single clevis style, Double clevis style, Head side trunnion style, Clevis integrated style, Boss cut style, Boss-cut flange style						

* Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked. The maximum speed of 750 mm/s can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Fine Lock Specifications

Lock operation	Spring locking (Exhaust locking)	Spring and pneumatic locking	Pneumatic locking (Pressure locking)		
Fluid	Air				
Maximum operating pressure	0.5 MPa				
Unlocking pressure	0.3 MPa or more		0.1 MPa or more		
Lock starting pressure	0.25 MPa or less		0.05 MPa or more		
Locking direction	Both directions				

Standard Stroke

Bore size (mm)	Standard stroke ⁽¹⁾ (mm)	Long stroke ⁽²⁾ (mm)	Maximum stroke (mm)
20		400	
25	25, 50, 75, 100, 125,	450	1000
32	150, 200, 250, 300	450	1000
40		500	

Note 1) Intermediate stroke is available, too.

Note 2) The long stroke style is applicable to the axial foot style and the rod side flange style. For other applications that exceed the mounting support bracket and long stroke limitations, the maximum stroke that can be used is determined by the stroke selection table (reference edition).

the maximum stroke	inal can be used	is determined by	I THE STICKE SELECTION	table (relefence edition

Minimum Stroke for Auto Switch Mounting							
Auto switch			uto switches mour	nted			
model	2	2		<u>1</u>	1		
model	Different sides	Same side	Different sides	Same side	1		
D-C7□ D-C80	15	50	$15 + 45(\frac{n-2}{2})$	50 + 45 (n – 2)	10		
D-H7□ D-H7□W D-H7BAL D-H7NF	15	60	(n = 2, 4, 6)	60 + 45 (n – 2)	10		
D-C73C D-C80C D-H7C	15	65	$ \begin{array}{c} 15 + 50 \left(\frac{n-2}{2}\right) \\ (n = 2, 4, 6 \cdots) \end{array} $	65 + 50 (n - 2)	10		
D-B5⊡ D-B64	15	75	$15 + 50 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	75 · 55 (m - 0)	10		
D-B59W	20	75	$ \begin{array}{l} (n=2,4,6\cdots) \\ 20+50(\frac{n-2}{2}) \\ (n=2,4,6\cdots) \end{array} $	75 + 55 (11 - 2)	15		
D-A3⊟A D-G39A D-K39A D-A44A	35	100	35 + 30 (n - 2)	100 + 100 (n – 2)	10		

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature
J	Nylon tarpaulin	70°C
к	Heat resistant tarpaulin	110°C *

* Maximum ambient temperature for the rod boot itself.

Mounting Bracket and Accessory

Accessory	Stand	lard equip	oment	Option			
Mounting	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double ⁽³⁾ knuckle joint	Clevis ⁽⁴⁾ pivot bracket	Rod boot
Basic style	• (1pc.)	\bullet	-			—	•
Axial foot style	• (2)		_			—	•
Rod side flange style	• (1)	•	_			—	•
Head side flange style	• (1)	•	_			—	•
Clevis integrated style	(1)	•	_				•
Single clevis style	(1)	•				—	•
Double clevis style ⁽³⁾	(1)	•	•			—	•
Head side trunnion style	• (1) ⁽²⁾	•	_			—	•
Boss-cut basic style	• (1)	\bullet	_			—	
Boss-cut flange style	• (1)	\bullet	—			_	\bullet
Note						With pin	

Note 1) Mounting nut is not equipped with clevis integrated style, single clevis style and double clevis style.

Note 2) Trunnion nuts are attached for head side trunnion style. Note 3) Pin and snap ring (ø40: cotter pin) are shipped together with double clevis and double knuckle joint.

Note 4) Pin and snap ring are shipped together with clevis pivot bracket.

Weight

					(
Bore size (mm)			25	32	40
	Basic style		0.87	0.94	1.30
	Axial foot style	0.70	1.03	1.10	1.57
	Flange style	0.61	0.96	1.03	1.42
	Clevis integrated style	0.53	0.85	0.93	1.26
Basic weight	Single clevis style	0.59	0.91	0.98	1.39
weigin	Double clevis style	0.60	0.93	0.99	1.43
	Trunnion style	0.59	0.94	1.00	1.40
	Boss-cut basic style	0.54	0.85	0.92	1.27
	Boss-cut flange style	0.60	0.94	1.01	1.39
Addition	al weight per each 50 mm of stroke	0.04	0.06	0.08	0.13
	Clevis bracket (With pin)	0.07	0.07	0.14	0.14
Option bracket	Single knuckle joint	0.06	0.06	0.06	0.23
STUCKET	Double knuckle joint (With pin)	0.07	0.07	0.07	0.20
Calculation	· · (Example) CI M2I 22 100 · · · · ·	alaht		0 / [aat	~ 20)

Calculation: (Example) CLM2L32-100 • Basic weight 1.10 (Foot, ø32) • Additional weight 0.08/50 stroke

• Cylinder stroke 100 stroke 1.10 + 0.08 x 100/50 = 1.26 kg

Auto Switch Mounting Bracket Part No.

Auto switch	Bore size (mm)					
model	20	25	32	40		
D-C7□/C80 D-H7□	BM2-020	BM2-025	BM2-032	BM2-040		
D-B5⊡/B64 D-G5⊡	BA2-020	BA2-025	BA2-032	BA2-040		
D-A3⊟A/A44A D-G39A/K39A	BM3-020	BM3-025	BM3-032	BM3-040		

[Mounting screws set made of stainless steel]

The following set of mounting screws made of stainless steel is also available. Use it in accordance with the operating environment.

(A switch mounting band is not included, so please order it separately.) BBA3: For D-B5/B6/G5

BBA4: For D-C7/C8/H7

"D-H7BAL" switch is set on the cylinder with the stainless steel screws above when shipped.

When only a switch is shipped independently, "BBA4" screws are attached.

Mounting Bracket Part No.

Bore size (mm)	20	25	32	40		
Axial foot *	CM-L020B	CM-L032B		CM-L032B CM-L0		CM-L040B
Flange	CM-F020B	CM-F032B		CM-F040B		
Single clevis	CM-C020B	CM-C032B		CM-C040B		
Double clevis **	CM-D020B	CM-D	032B	CM-D040B		
Trunnion (with nut)	CM-T020B	CM-T	032B	CM-T040B		

* When ordering foot bracket, order 2 pieces per cylinder.

** Clevis pin and snap ring (ø40: cotter pin) are shipped together with double clevis style.

Boss-cut style

Boss for the head side cover bracket is eliminated and the total length of cylinder is shortened.

Comparison of the full length dimension (Versus standard type) (mm)

	7 . <i>7</i>					
ø 20	ø 25	ø 32	ø 40			
▲13	▲ 13	▲ 13	▲ 16			

Mounting style

■ Boss-cut basic style (BZ) ■ Boss-cut flange style (FZ)

Air-hydro

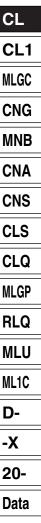
(ka)

CLM2H	Mounting style	Bore size	Stroke	Rod boot
	the law allows			

Air-hydro

Low hydraulic cylinder 1 MPa or less

Through the concurrent use of a CC series air-hydro unit, it is possible to operate at a constant or low speeds or to effect an intermediate stop, just like a hydraulic unit, while using pneumatic equipment such as a valve.



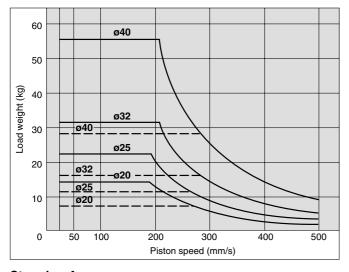
Specifications

Fluid	Turbine oil (Lock portion is air)		
Action	Double acting, Single rod		
Bore size (mm)	20, 25, 32, 40		
Maximum operating pressure	1.0 MPa		
Minimum operating pressure	0.2 MPa		
Piston speed	15 to 300 mm/s		
Cushion	Rubber bumper (Standard equipment)		
Piping	Screw-in type		
Mounting	Basic style, Axial foot style, Rod side flange style Head side flange style, Single clevis style Double clevis style, Head side trunnion style Clevis integrated style, Boss-cut style		

* Auto switch capable

 For an exterior dimension diagram to identify the mounting support types, refer to pages 9-2-22 to 9-2-26 as the dimensions are identical to those of standard.

A Caution/Allowable Kinetic Energy when Locking


				-
Bore size (mm)	20	25	32	40
Allowable kinetic energy (J)	0.26	0.42	0.67	1.19

1. In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa, and a piston speed of 300 mm/sec. Therefore, if the operating conditions are below these values, calculations are unnecessary.

2. Apply the following formula to obtain the kinetic energy of the load.

1 .	Ek: Kinetic energy of load (J)
$Ek = \frac{1}{2}mv^2$	m: Load weight (kg)
2	υ: Piston speed (m/s)

- **3.** The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.2 times the average speed as a guide.
- 4. The relation between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.
- 5. During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Stopping Accuracy	(Not i	ncluding tolerance o	f control system.) (mm)

Locking method		Pistor	speed (r	nm/s)	
Looking method	20 *	50	100	300	500
Spring locking (Exhaust locking)	±0.3	±0.4	0.5	±1.0	±2.0
Pneumatic locking (Pressure locking) Spring and pneumatic locking	±0.15	±0.2	±0.3	0.5	±1.5

Conditions: Load: 25% of thrust force at 0.5 MPa

Solenoid valve: Mounted to the lock port

 $20\ \text{mm/s}$ marked with the asterisk is in the case of actuating hydraulically by means of air-hydro type.

\land Caution

Recommended Pneumatic Circuit/Caution on Handling

For detailed speceifications of the fine lock cylinder, Series CLM2 mentioned above, refer to pages 9-2-4 to 9-2-7.

Accessory


For accessory dimensions, refer to Best Pneumatics Vol. 6, since it is same as Series CM2.

Holding Force of Spring Locking (Maximum static load)

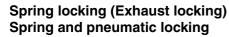
				,
Bore size (mm)	20	25	32	40
Holding force (N)	196	313	443	784

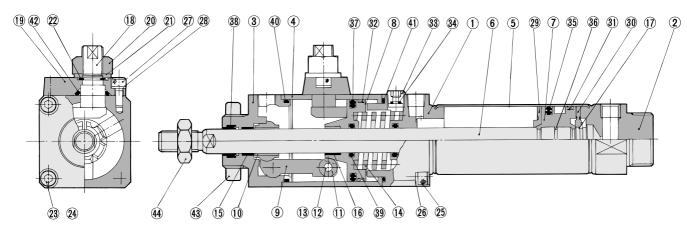
Note) Holding force at piston rod extended side decreases approximately 15%.

Holding Force of Spring Locking (Maximum static load)

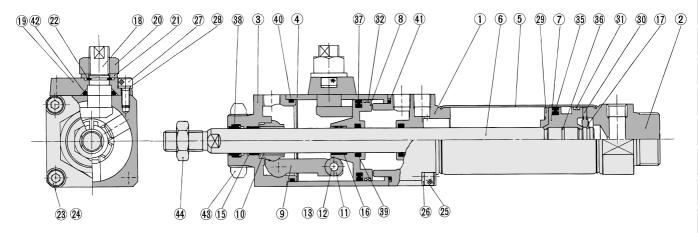
A Caution

Caution when Locking


The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.


- If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- Do not use the cylinder in the locked state to sustain a load that involves impact.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.

Regarding the installation position and the mounting height of the auto switch, refer to page of Series CDM2 air cylinder (Double acting, Single rod), since the dimensions are the same.

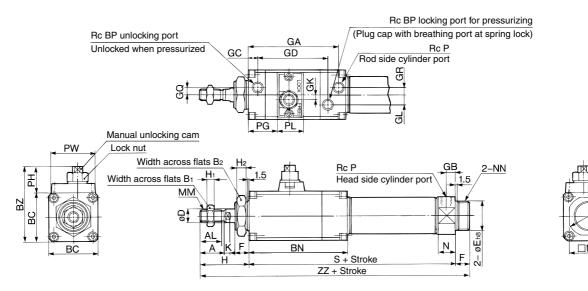


Construction (Not able to disassemble.)

Pneumatic locking (Pressure locking)

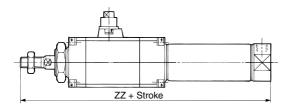
Component Parts

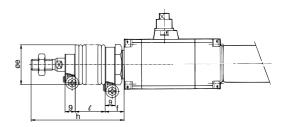
No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cover	Carbon steel	Nitrided, chrome plated
4	Intermediate cover	Aluminum alloy	Hard anodized
5	Cylinder tube	Stainless steel	
6	Piston rod	Carbon steel	Hard chrome plated
0	Piston	Aluminum alloy	Chromated
8	Brake piston	Carbon steel	Nitrided
9	Brake arm	Carbon steel	Nitrided
10	Brake shoe	Special friction material	
€	Roller	Carbon steel	
12	Pin	Carbon steel	
(13)	Snap ring	Carbon tool steel	Nickel plated
14	Brake spring	Spring steel wire	Dacrodized
15	Bushing	Oil-impregnated sintered alloy	
16	Bushing	Oil-impregnated sintered alloy	
17	Snap ring	Carbon tool steel	Nickel plated
18	Manual lock release cam	Chromium molybdenum steel	Nickel plated
19	Cam guide	Carbon steel	Nitrided, painted
20	Lock nut	Rolled steel	Nickel plated
21	Flat washer	Rolled steel	Nickel plated
22	Snap ring	Carbon tool steel	Nickel plated
23	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated


No.	Description	Material	Note
24	Spring washer	Steel wire	Nickel plated
25	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
26	Spring washer	Steel wire	Nickel plated
27	Hexagon socket head cap screw	Chromium molybdenum steel	Nickel plated
28	Spring washer	Steel wire	Nickel plated
29	Bumper A	Urethane	
30	Bumper B	Urethane	
31	Wear ring	Resin	
32	Wear ring	Resin	
33	Hexagon socket head plug	Carbon steel	Type E only
34)	Element	Bronze	Type E only
35	Piston seal	NBR	
36	Piston gasket	NBR	
37	Brake piston seal	NBR	
38	Rod seal A	NBR	
39	Rod seal B	NBR	
(40)	Middle cover gasket A	NBR	
(41)	Middle cover gasket B	NBR	
(42)	Cam gasket	NBR	
(43)	Mounting nut	Carbon steel	Nickel plated
(44)	Rod end nut	Carbon steel	Nickel plated

Series CLM2

Basic Style (B)


CLM2B Bore size - Stroke


Basic style

Boss-cut

With rod boot

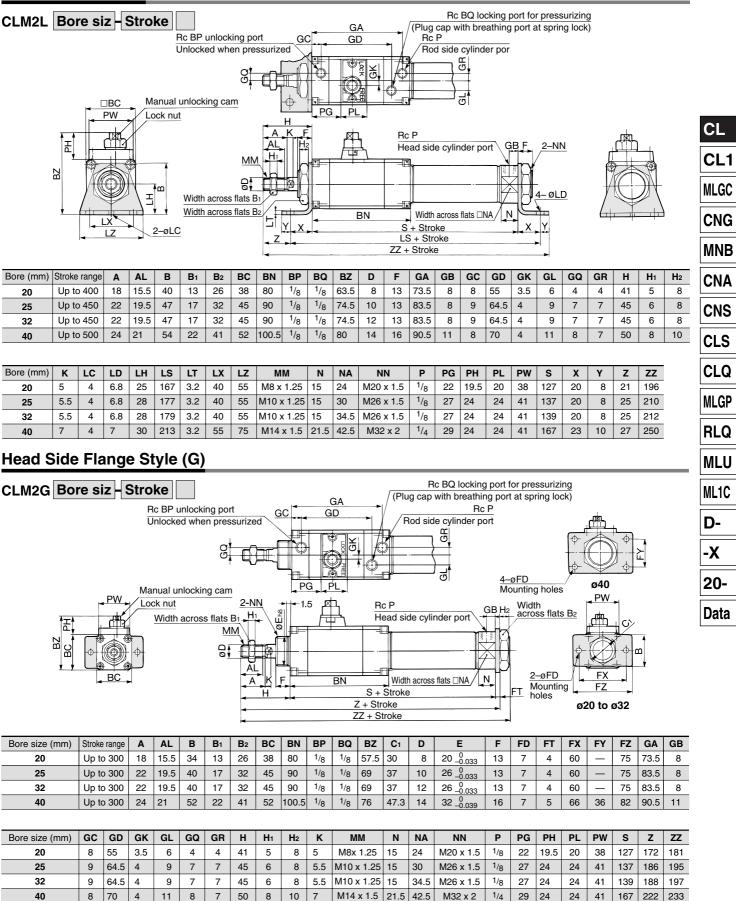
Bore (mm)	Stroke range	Α	AL	B 1	B ₂	BC	BN	BP	BQ	BZ	D	E	F	GA	GB	GC	GD	GK	GL	GQ	GR	н	H1	H ₂	I
20	Up to 300	18	15.5	13	26	38	80	1 _{/8}	1 _{/8}	57.5	8	20 _0033	13	73.5	8	8	55	3.5	6	4	4	41	5	8	28
25	Up to 300	22	19.5	17	32	45	90	1 _{/8}	1 _{/8}	69	10	26 _03	13	83.5	8	9	64.5	4	9	7	7	45	6	8	33.5
32	Up to 300	22	19.5	17	32	45	90	1/8	1/8	69	12	26 _03	13	83.5	8	9	64.5	4	9	7	7	45	6	8	37.5
40	Up to 300	24	21	22	41	52	100.5	1 _{/8}	1/8	76	14	0		90.5	11	8	70	4	11	8	7	50	8	10	46.5

Bore (mm)	К	ММ	Ν	NA	NN	Ρ	PG	PH	PL	PW	S	ZZ
20	5	M8 x 1.25	15	24	M20 x 1.5	1/8	22	19.5	20	38	127	181
25	5.5	M10 x 1.25	15	30	M26 x 1.5	1/8	27	24	24	41	137	195
32	5.5	M10 x 1.25	15	34.5	M26 x 1.5	1/8	27	24	24	41	139	197
40	7	M14 x 1.5	21.5	42.5	M32 x 2	1/4	29	24	24	41	167	233

Boss-cut	
----------	--

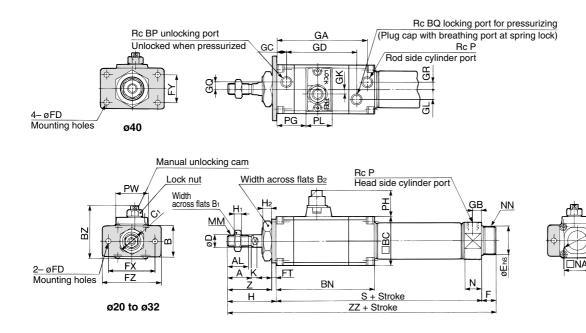
Bore size (mm)	ZZ
20	168
25	182
32	184
40	217

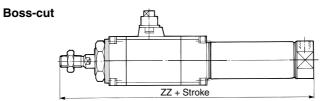
With Rod Boot


Bore size		4				h							l			
(mm)	е	I	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500
20	35	17	68	81	93	106	131	156	—	12.5	25	37.5	50	75	100	
25	35	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
32	35	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
40	46	17	77	90	102	115	140	165	190	12.5	25	37.5	50	75	100	125

* Over 301 stroke: Long stroke.

21


Axial Foot Style (L)



Series CLM2

Rod Side Flange Style (F)

CLM2F Bore size Stroke

Bore (mm)	Stroke range	Α	AL	в	B 1	B ₂	BC	BN	BP	BQ	BZ	C 1	D	E	F	FD	FT	FX	FY	FZ	GA	GB	GC	GD	GK
20	Up to 400	18	15.5	34	13	26	38	80	1/8	1/8	57.5	30	8	20 _00	13	7	4	60	—	75	73.5	8	8	55	3.5
25	Up to 450	22	19.5	40	17	32	45	90	1/8	1/8	69	37	10	26 _03	13	7	4	60	—	75	83.5	8	9	64.5	4
32	Up to 450	22	19.5	40	17	32	45	90	1/8	1/8	69	37	12	26 _03	13	7	4	60	—	75	83.5	8	9	64.5	4
40	Up to 500	24	21	52	22	41	52	100.5	1/8	1/8	76	47.3	14	32 _0	16	7	5	66	36	82	90.5	11	8	70	4

SMC

Boss-cut Bore (mm) zz

168

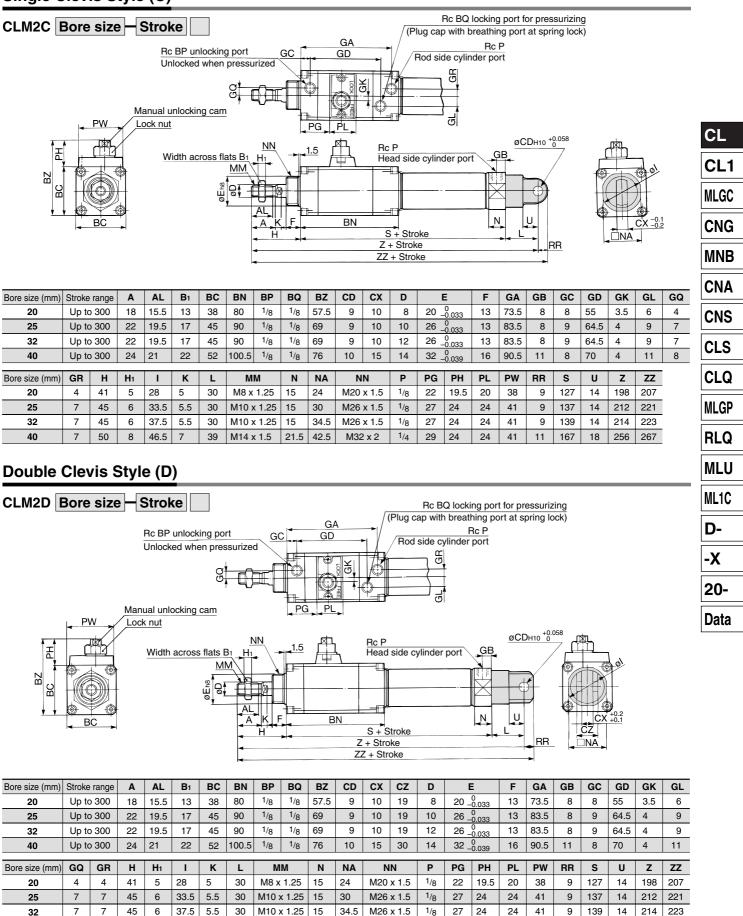
182

184

217

20

25


32

40

Bore (mm)	GL	GQ	GR	н	H1	H2	I	к	ММ	Ν	NA	NN	Р	PG	PH	PL	PW	S	z	ZZ
20	6	4	4	41	5	8	28	5	M8 x 1.25	15	24	M20 x 1.5	1/8	22	19.5	20	38	127	37	181
25	9	7	7	45	6	8	33.5	5.5	M10 x 1.25	15	30	M26 x 1.5	1/8	27	24	24	41	137	41	195
32	9	7	7	45	6	8	37.5	5.5	M10 x 1.25	15	34.5	M26 x 1.5	1/8	27	24	24	41	139	41	197
40	11	8	7	50	8	10	46.5	7	M14 x 1.5	21.5	42.5	M32 x 2	1/4	29	24	24	41	167	45	233

23

Single Clevis Style (C)

* Clevis pin and snap ring (ø40: cotter pin) are shipped together.

46.5 7

39

M14 x 1.5

50 8

7

8

40

42.5

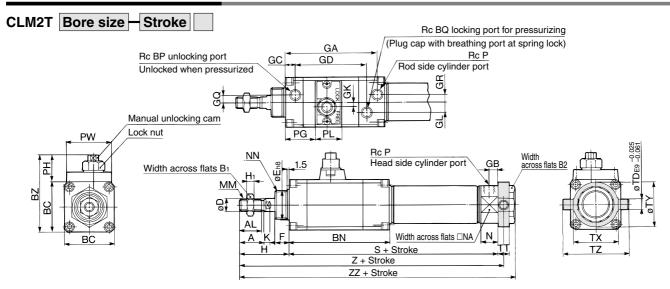
21.5

M32 x 2

1/4

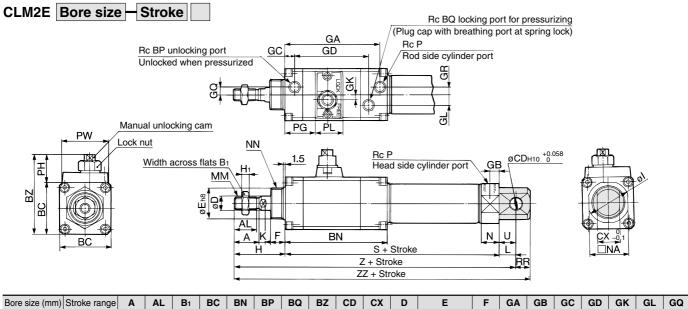
29 24

24 41


11

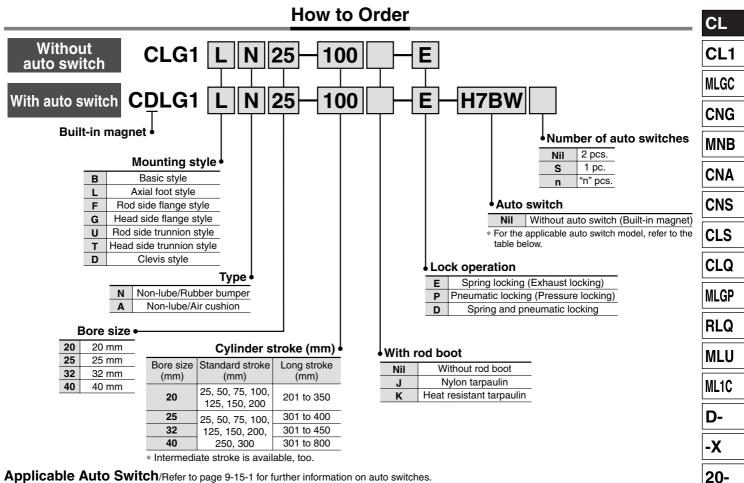
167

18


Series CLM2

Head Side Trunnion Style (T)

Bore size (mm)	Stroke	range	Α	AL	B 1	B ₂	BC	BN	BP	BQ	BZ	D		Е		F	GA	GB	GC	GD	GK	GL	GQ
20	Up to	o 300	18	15.5	13	26	38	80	1/8	1/8	57.5	8	2	0_0.03	3	13	73.5	8	8	55	3.5	6	4
25	Up to	o 300	22	19.5	17	32	45	90	1/8	1/8	69	10	2	6 _0.03	3	13	83.5	8	9	64.5	4	9	7
32	Up to	o 300	22	19.5	17	32	45	90	1/8	1/8	69	12	2	6 _0.03	3	13	83.5	8	9	64.5	4	9	7
40	Up to	o 300	24	21	22	41	52	100.5	1/8	1/8	76	14	3	2 _0.03	9	16	90.5	11	8	70	4	11	8
Bore size (mm)	GR	н	H1	К	M	М	Ν	NA	N	NN		PG	PH	PL	PW	S	TD	TT	ТΧ	ΤY	ΤZ	Z	ZZ
20	4	41	5	5	M8 x	1.25	15	24	M20	x 1.5	1/8	22	19.5	20	38	127	8	10	32	32	52	173	183
25	7	45	6	5.5	M10 >	(1.25	15	30	M26	x 1.5	1/8	27	24	24	41	137	9	10	40	40	60	187	197
			-		1440.	4.05	4.5	04 E	M26 x 1.5		1/8	27	24	24	41	139	9	10	40	40	60	189	199
32	7	45	6	5.5		(1.25	15	34.5	IVI20	x 1.5	1/8	21	24	24	41	105	5		40	40	00	109	133


Clevis Integrated Style (E)

Bore size (mm)	Stroke	range	Α	AL	B1	BC	BN	BP	BQ	BZ	CD	СХ	D	E	Ξ	F	GA	GB	GC	GD	GK	GL	GC
20	Up to	o 300	18	15.5	13	38	80	1/8	1/8	57.5	8	12	8	20 _	0 0.033	13	73.5	8	8	55	3.5	6	4
25	Up to	o 300	22	19.5	17	45	90	1/8	1/8	69	8	12	10	26 _	0 0.033	13	83.5	8	9	64.5	4	9	7
32	Up to	o 300	22	19.5	17	45	90	1/8	1/8	69	10	20	12	26 _	0 0.033	13	83.5	8	9	64.5	4	9	7
40	Up to	o 300	24	21	22	52	100.5	1/8	1/8	76	10	20	14	32 _	0 0.039	16	90.5	11	8	70	4	11	8
Bore size (mm)	GR	н	H1	I	к	L	М	М	Ν	NA	N	N	Р	PG	PH	PL	PW	RR	S	U	z	ZZ	
20	4	41	5	28	5	12	M8 x	1.25	15	24	M20	x 1.5	1/8	22	19.5	20	38	9	127	11.5	180	189	
25	7	45	6	33.5	5.5	12	M10>	(1.25	15	30	M26	x 1.5	1/8	27	24	24	41	9	137	11.5	194	203	
32	7	45	6	37.5	5.5	15	M10>	(1.25	15	34.5	M26	x 1.5	1/8	27	24	24	41	12	139	14.5	199	211	
40	7	50	8	46.5	7	15	M14	x 1.5	21.5	42.5	M32	2 x 2	1/4	29	24	24	41	12	167	14.5	232	244	

Fine Lock Cylinder Double Acting, Single Rod Series CLG1 ø20, ø25, ø32, ø40

Applicable Auto Switch/Refer to page 9-15-1 for further information on auto switches.

			light	\\/ining	L	oad volta	age		Lea	d wir	e (m	ı) *	Pre-wire		
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	D	С	AC	Auto switch model	0.5 (Nil)	3 (L)		None (N)	connector	Applica	ble load
tch		Grommet		3-wire (NPN equivalent)		5 V	_	C76	•	•	_	_	_	IC circuit	_
Reed switch	_	Giommet	Yes				100 V, 200 V	B54		\bullet		—	—		
eq			≻	Quuino	24 V	24 V 12 V	100 V	C73		\bullet		-	—		Relay,
Re		Connector		2-wire 2	24 V			C73C		\bullet	\bullet		—	_	PLC
	Diagnostic indication (2-color indication)	Grommet						B59W		\bullet	-	-	—		
		Grommet 3-wire (NPN) 5 V, 12 V H7A1 2-wire 2-wire 10 V H7B	H7A1		\bullet	0	_	0	IC						
۔				3-wire (PNP)		5 V, 12 V		H7A2		\bullet	0	—	0	circuit	
switch	-				2-wire		1014		H7B		\bullet	0	_	0	
		Connector		2-0016		12 V		H7C		\bullet			—		Delay
tate	Diagnostic indication		l ≫	3-wire (NPN)	24 V	= 14 4 0 14	—	H7NW		\bullet	0	—	0	IC	Relay, PLC
d s	Diagnostic indication (2-color indication)			3-wire (PNP)		5 V, 12 V		H7PW		\bullet	0	—	0	circuit	1 20
Soli		Grommet		2-wire		12 V		H7BW		\bullet	0	—	0		
•	Water resistant (2-color indication)	1		2-1116		12 V		H7BA	-	\bullet	0	—	0	_	
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		H7NF		\bullet	0	—	0	IC circuit	
* Lea	d wire length symbols: 0.5	mN	il	(Example) C7			* Solid st	ate switches marked with '	'O" ar	e pro	oduc	ed u	pon receip	t of orde	er.

3 m L (Example) H73CL

5 m..... z (Example) C73CZ

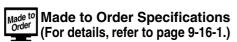
None----- N (Example) C73CN

• Since there are other applicable auto switches than listed, refer to page 9-2-29 for details.

For details about auto switches with pre-wire connector, refer to page 9-15-66.

25

Data


Series CLG1

Provided with a compact lock mechanism, it is suitable for intermediate stop, emergency stop, and drop prevention.

Locking in both directions

The piston rod can be locked in either direction of its cylinder stroke.

Symbol	Specifications
-XA🗆	Change of rod end shape

Model

Series	Туре	Action	Cushion	Piston seal	Bore size (mm)	Lock operation
CLG1⊡N CLG1⊡A	Non-lube	Double acting	Rubber bumper Air cushion	Special seal	20, 25 32, 40	Spring locking (Exhaust locking) Pneumatic locking (Pressure locking) Spring and pneumatic locking

Specifications

•	
Fluid	Air
Proof pressure	1.5 MPa
Maximum operating pressure	1 MPa
Minimum operating pressure	0.08 MPa
Ambient and fluid temperature	Without auto switch: -10 to 70°C (No freezing) With auto switch: -10 to 60°C (No freezing)
Piston speed	50 to 500 mm/sec *
Thread tolerance	JIS Class 2
Stroke length tolerance	Up to 800 st ^{+1.4} mm
Mounting **	Basic style, Axial foot style, Rod side flange style, Head side flange style, Rod side trunnion style, Head side trunnion style, Clevis style (Used when port position is changed to 90°.)

* Constraints associated with the allowable kinetic energy are imposed on the speeds at which the piston can be locked.

The maximum speed of 1000 mm/s can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

** The long stroke style is applicable to the basic style, the axial foot style, and the rod side flange style.

Fine Lock Specifications

Lock operation	Spring locking Spring and (Exhaust locking) pneumatic locking		Pneumatic locking (Pressure locking)				
Fluid	Air						
Maximum operating pressure	0.5 MPa						
Unlocking pressure	0.3 MPa	0.1 MPa or more					
Lock starting pressure	0.25 MP	a or less	0.05 MPa or more				
Locking direction							

Accessory

Mounting		Basic style	Axial foot style				Head side trunnion style	Clevis style
Standard	Rod end nut	•						•
equipment	Clevis pin	_	—	—	—	—	—	•
	Single knuckle joint							•
Option	Double knuckle joint (With pin)	•	•	•	•	•	•	•
	Pivot bracket	_	_	_	—			•
	Rod boot	\bullet						\bullet

Weight (kg) Bore size (mm) 20 25 32 40 Basic style 0.61 0.97 1.06 1.35 weight Axial foot style 0.72 1.10 1.22 1.57 Flange style 0.73 1.15 1.23 1.58 Basic v Trunnion style 0.62 0.99 1.09 1.40 Clevis style 0.66 1.05 1.21 1.58 Rod side pivot bracket 0.11 0.13 0.20 0.27 Head side pivot bracket 0.08 0.09 0.17 0.25 Single knuckle joint 0.05 0.09 0.09 0.10 Double knuckle joint (with pin) 0.05 0.09 0.09 0.13 Additional weight per each 50 mm of stroke 0.07 0.15 0.05 0.09 Additional weight with air cushion 0.01 0.01 0.02 0.02 Additional weight for long stroke 0.01 0.01 0.02 0.03

Calculation: (Example)

- CLG1LA20-100 (Foot, ø20, 100 st)
- Basic weight 0.72 Additional weight 0.05/50 st
- Air cylinder stroke------100 st
- Additional weight of air cushion 0.01 kg 0.72 + 0.05 x 100/50 + 0.01 = 0.83 kg

Standard Stroke

	Bore size (mm)	Standard stroke (mm)	Long stroke (mm)	Maximum manufacturable stroke (mm)					
	20	25, 50, 75, 100, 125, 150, 200	201 to 350						
	25	25, 50, 75, 100,	301 to 400	1500					
	32	125, 150, 200,	301 to 450						
	40	250, 300	301 to 800						
2	* Intermediate stroke is available, too.								

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature
J	Nylon tarpaulin	70°C
к	Heat resistant tarpaulin	110°C *

* Maximum ambient temperature for the rod boot itself.

Minimum Stroke for Auto Switch Mounting

Due to the space requirements for installing auto switches, the minimum cylinder strokes are as shown in the table below.

Auto switch model	No. of auto switches mounted					
Auto switch model	1	2				
D-B5□/B64 D-C7□/C80 D-H7□ D-G5□/K5□	10 mm	15 mm				
D-B59W	15 mm	20 mm				

CL

CL1

MLGC

CNG

MNB

CNA

CNS

CLS

CLQ

MLGP

RLQ

MLU

ML1C

D-

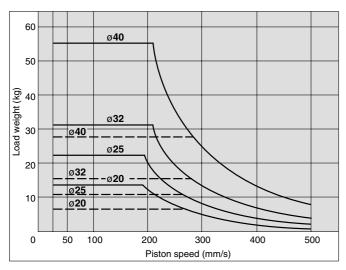
-X

20-

Data

Caution/Allowable Kinetic Energy when Locking

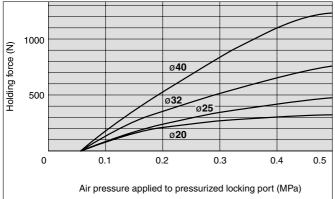
Bore size (mm)	20	25	32	40
Allowable kinetic energy (J)	0.26	0.42	0.67	1.19


- 1. In terms of specific load conditions, the allowable kinetic energy indicated in the table above is equivalent to a 50% load ratio at 0.5 MPa, and a piston speed of 300 mm/sec. Therefore, if the operating conditions are below these values, calculations are unnecessary.
- 2. Apply the following formula to obtain the kinetic energy of the load.

Ek: Kinetic energy of load (J) $Ek = \frac{1}{2}mv^2$

m: Load weight (kg)

v: Piston speed (m/s) (Average speed x 1.2 times)


- 3. The piston speed will exceed the average speed immediately before locking. To determine the piston speed for the purpose of obtaining the kinetic energy of load, use 1.2 times the average speed as a guide.
- 4. The relation between the speed and the load of the respective tube bores is indicated in the diagram below. Use the cylinder in the range below the line.
- 5. During locking, the lock mechanism must sustain the thrust of the cylinder itself, in addition to absorbing the energy of the load. Therefore, even within a given allowable kinetic energy level, there is an upper limit to the size of the load that can be sustained. Thus, a horizontally mounted cylinder must be operated below the solid line, and a vertically mounted cylinder must be operated below the dotted line.

Holding Force of Spring Locking (Maximum static load)

Bore size (mm)	20	25	32	40				
Holding force (N)	196	313	443	784				
Note) Holding force at piston rod extended side decreases approximately 15%.								

Holding Force of Spring Locking (Maximum static load)

A Caution

Caution when Locking

The holding force is the lock's ability to hold a static load that does not involve vibrations or impacts, when it is locked without a load. Therefore, when normally using the cylinder near the upper limit of the holding force, be aware of the points described below.

- · If the piston rod slips because the lock's holding force has been exceeded, the brake shoe could be damaged, resulting in a reduced holding force or shortened life.
- To use the lock for drop prevention purposes, the load to be attached to the cylinder must be within 35% of the cylinder's holding force.
- Do not use the cylinder in the locked state to sustain a load that involves impact.

Stopping Accuracy (Not including tolerance of control system.) (mm)

		Piston spe	ed (mm/s)	
Locking method	50	100	300	500
Spring locking (Exhaust locking)	±0.4	±0.5	±1.0	±2.0
Pneumatic locking (Pressure locking) Spring and pneumatic locking	±0.2	±0.3	±0.5	±1.5

Condition/load: 25% of thrust force at 0.5 MPa Solenoid valve: Mounted to the lock port

A Caution

Recommended Pneumatic Circuit/Caution on Handling

- For detailed speceifications of the fine lock cylinder, Series
- CLG1 mentioned above, refer to pages 9-2-4 to 9-2-7.

Regarding the installation position and the mounting height of the auto switch, refer to page of Series CDG1 air cylinder (Double acting, Single rod), since the dimensions are the same

Auto Switch Mounting Bracket Part No.

Auto ouitob model		Bore si	ze (mm)					
Auto switch model	20	25	32	40				
D-B5⊡/B64 D-G5⊡/K5⊡	BA-01	BA-02	BA-32	BA-04				
D-C7⊡/C80 D-H7⊡	BMA2-020	BMA2-025	BMA2-032	BMA2-040				
* Mounting screws set made of stainless steel								

The following set of mounting screws made of stainless steel is also available. Use it in accordance with the operating environment.

(A switch mounting band is not included, so please order it separately.)

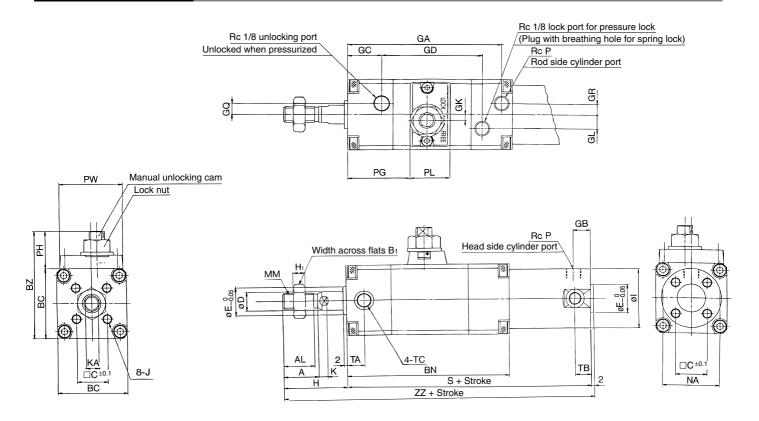
BBA3: For D-B5/B6/G5

BBA4: For D-C7/C8/H7 "D-H7BAL" switch is set on the cylinder with the stainless steel screws above when shipped.

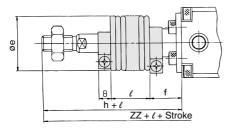
When only a switch is shipped independently, "BBA4" screws are attached.

Mounting Bracket Part No.

Auto switch model		Bore siz	ze (mm)	
Auto switch model	20	25	32	40
Axial foot *	CLG-L020	CLG-L025	CLG-L032	CLG-L040
Flange	CLG-F020	CLG-F025	CLG-F032	CLG-F040
Trunnion pin	CG-T020	CG-T025	CG-T032	CG-T040
Clevis **	CG-D020	CG-D025	CG-D032	CG-D040
Rod side pivot bracket	CLG-020-24	CLG-025-24	CLG-032-24	CLG-040-24
Head side pivot bracket	CG-020-24A	CG-025-24A	CG-032-24A	CG-040-24A


* When ordering foot bracket, order 2 pieces per cylinder.

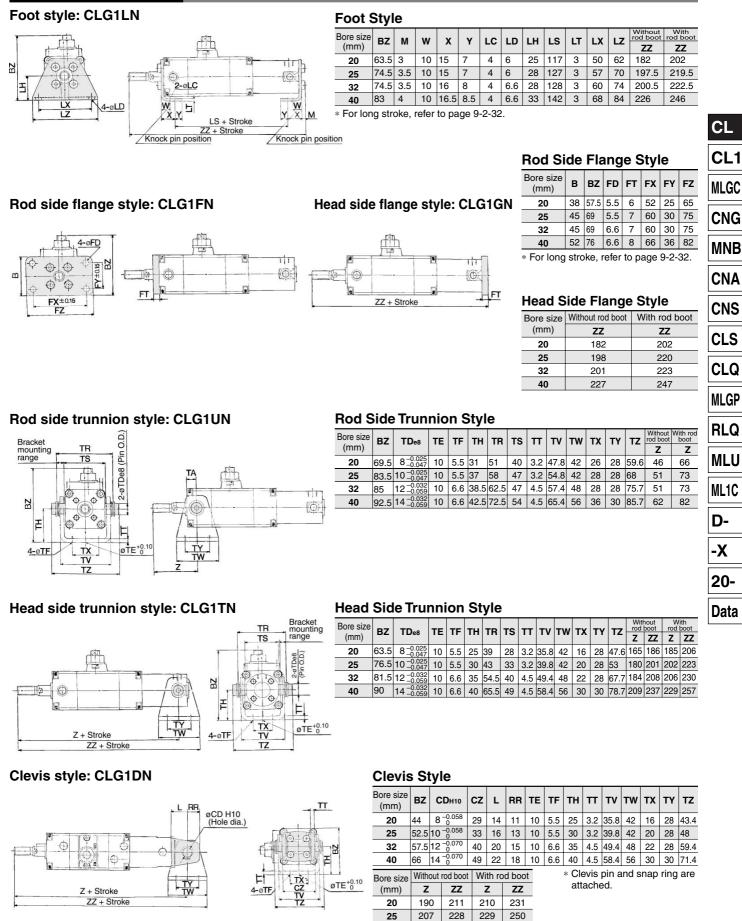
** Clevis pin and snap ring are shipped together with clevis style.



Series CLG1

Basic Style: CLG1BN

With rod boot

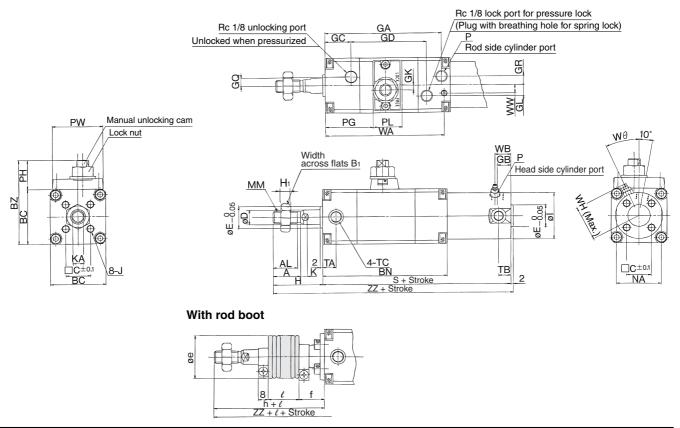

Bore size (mm)	Stroke range	AL	Α	B1	вс	BN	BZ	с	D	Е	GA	GB	GC	GD	GK	GL	GQ	GR	I	J	к	KA	ММ
20	Up to 200	15.5	18	13	38	91	57.5	14	8	12	84	12	19	54	3.5	5.5	4	4	26	M4 x 0.7 depth 7	4	6	M8 x 1.25
25	Up to 300	19.5	22	17	45	101	69	16.5	10	14	94	12	20	62	4	9	7	7	31	M5 x 0.8 depth 7.5	5	8	M10 x 1.25
32	Up to 300	19.5	22	17	45	102	69	20	12	18	95	11	21	62	4	9	7	7	38	M5 x 0.8 depth 8	5.5	10	M10 x 1.25
40	Up to 300	27	30	19	52	111	76	26	16	25	103	12	23	67	4	11	8	8	47	M6 x 1 depth 12	6	14	M14 x 1.5

Bore size	Stroke	H1	NA	Р	PG	РН	PL	PW	s	ТА	тв	тс	Wit rod	nout boot		Wit	h rod l	ooot	
(mm)	range	ח 1	INA	P	PG	РП	PL	PVV	3	IA	пр		н	ZZ	е	f	h	l	ZZ
20	Up to 200	5	24	Rc 1/8	33	19.5	20	38	141	11	11	M5 x 0.8	35	178	30	16	55		198
25	Up to 300	6	29	Rc 1/8	38	24	24	41	151	11	11	M6 x 0.75	40	193	30	17	62	0.25	215
32	Up to 300	6	36	Rc 1/8	39	24	24	41	154	11	10	M8 x 1	40	196	35	17	62	stroke	218
40	Up to 300	8	44	Rc 1/8	44	24	24	41	169	12	10	M10 x 1.25	50	221	35	17	70		241
	or long stro	ke refe	er to p	age 9-2	-32.														

CLQ

-X

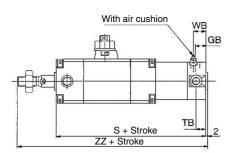
With Mounting Bracket



Series CLG1

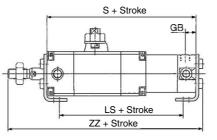
Basic Style with Air Cushion: CLG1BA

* Refer to page 9-2-31 for mounting bracket, since the dimensions except GA, P, WA, WB, WH, WW, W0 are the same.

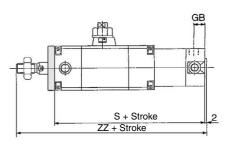


Bore size (mm)	Stroke range	AL	Α	Bı	вс	BN	BZ	с	D	Е	GA	GB	GC	GD	GK	GL	GQ	GR	I	J	к	KA	ММ	NA
20	Up to 200	15.5	18	13	38	91	57.5	14	8	12	85	12	19	54	3.5	5.5	4	4	26	M4 x 0.7 depth 7	4	6	M8 x 1.25	24
25	Up to 300	19.5	22	17	45	101	69	16.5	10	14	95	12	20	62	4	9	7	7	31	M5 x 0.8 depth 7.5	5	8	M10 x 1.25	29
32	Up to 300	19.5	22	17	45	102	69	20	12	18	95	11	21	62	4	9	7	7	38	M5 x 0.8 depth 8	5.5	10	M10 x 1.25	36
40	Up to 300	27	30	19	52	111	76	26	16	25	103	12	23	67	4	11	8	8	47	M6 x 1 depth 12	6	14	M14 x 1.5	44

Bore size	Stroke	Hı	Б	PG	РН	PL	PW	<u> </u>	та	тв	тс	34/4	ww	wв	ωн	wθ		hout boot		With	n rod	boot	
(mm)	range	п	Р	PG	РП	PL	PW	S	TA	пр		WA	~~~~	WD	wп	W0	Н	ZZ	е	f	h	l	ZZ
20	Up to 200	5	M5 x 0.8	33	19.5	20	38	141	11	11	M5 x 0.8	86	5.5	14	23	30°	35	178	30	16	55		198
25	Up to 300	6	M5 x 0.8	38	24	24	41	151	11	11	M6 x 0.75	96	7	14	25	30°	40	193	30	17	62	0.25	215
32	Up to 300	6	Rc 1/8	39	24	24	41	154	11	10	M8 x 1	97	7	13	28.5	25°	40	196	35	17	62	stroke	218
40	Up to 300	8	Rc 1/8	44	24	24	41	169	12	10	M10 x 1.25	105.5	9	14	33	20°	50	221	35	17	70		241


Long Stroke/Refer to pages 9-2-30 to 9-2-32 for mounting dimensions except the table below.

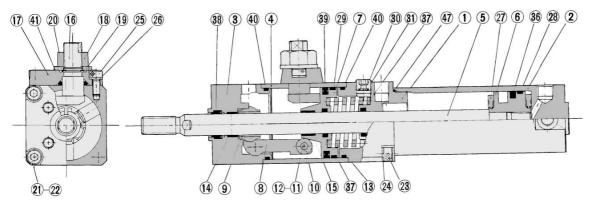
Basic style


Bore size (mm)	Stroke range	GB	s	Without rod boot	With rod boot	тв	wв
20	201 to 350	12	149	186	206	11	14
25	301 to 400	12	159	201	223	11	14
32	301 to 450	12	162	204	226	11	14
40	301 to 800	13	178	230	250	12	15

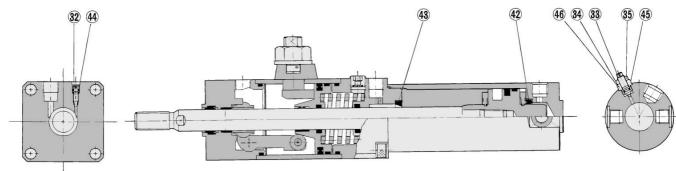
Foot style

Bore size (mm)	e Stroke range	GB	s	LS	Without rod boot ZZ	With rod boot ZZ
20	201 to 350	12	149	125	190	210
25	301 to 400	12	159	135	205.5	227.5
32	301 to 450	12	162	136	208.5	230.5
40	301 to 800	13	178	151	235	255

Rod side flange style



Bore size (mm)	Stroke range	GB	s	Without rod boot ZZ	With rod boot ZZ
20	201 to 350	12	149	186	206
25	301 to 400	12	159	201	223
32	301 to 450	12	162	204	226
40	301 to 800	13	178	230	250



Construction

With rubber bumper: CLG1BN

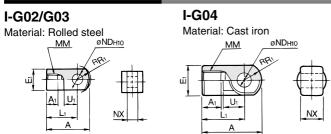
With air cushion: CLG1BA

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black hard anodized
2	Tube cover	Aluminum alloy	Hard anodized
3	Cover	Carbon steel	Nitrided
4	Intermediate cover	Aluminum alloy	Black hard anodized
5	Piston rod	Carbon steel *	Hard chrome plated
6	Piston	Aluminum alloy	Chromated, Hard anodized (With air cushion)
\overline{O}	Brake piston	Carbon steel	Nitrided
8	Brake arm	Carbon steel	Nitrided
9	Brake shoe	Special friction material	
10	Roller	Carbon steel	Nitrided
11	Pin	Carbon steel	Heat treated
(12)	Snap ring	Carbon tool steel	Nickel plated
(13)	Brake spring	Spring steel wire	Dacrodized
(14)	Bushing	Oil-impregnated sintered alloy	
(15)	Bushing	Oil-impregnated sintered alloy	
(16)	Manual lock release cam	Chromium molybdenum steel	Nickel plated
17	Cam guide	Carbon steel	Nitrided, painted

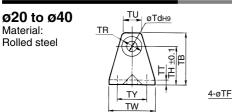
 \ast In the ø20 and ø25 cylinders with auto switches, the piston rod is made of stainless steel.

No.	Description	Material
36	Piston seal	NBR
37	Rod seal A	NBR
38	Rod seal B	NBR
39	Brake piston seal	NBR
40	Intermediate cover gasket	NBR
(41)	Cam gasket	NBR
(42)	Cushion seal A	NBR
43	Cushion seal B	NBR
44	Valve seal A	NBR
45	Valve seal B	NBR
(46)	Valve retaining gasket	NBR
47	Cylinder tube gasket	NBR
45 46	Valve seal B Valve retaining gasket	NBR NBR


Note) Please contact SMC if the fine lock unit must be disassembled.

No.	Description	Material	Note
(18)	Lock nut	Rolled steel	Nickel plated
(19)	Flat washer	Rolled steel	Nickel plated
20	Snap ring	Carbon tool steel	Nickel plated
21	Hexagon socket head cap screw	Chromium molybdenum steel	Black zinc chromated
22	Spring washer	Steel wire	Black zinc chromated
23	Hexagon socket head cap screw	Chromium molybdenum steel	Black zinc chromated
24	Spring washer	Steel wire	Black zinc chromated
25	Hexagon socket head cap screw	Chromium molybdenum steel	Black zinc chromated
26	Spring washer	Steel wire	Black zinc chromated
27)	Bumper	Urethane	
28	Wear ring	Resin	
29	Wear ring	Resin	
30	Hexagon socket head plug	Carbon steel	Type E only
31	Element	Bronze	Type E only
32	Cushion valve A	Brass	Electroless nickel plated
33	Cushion valve B	Rolled steel	Electroless nickel plated
34	Cushion valve retainer	Rolled steel	Electroless nickel plated
35	Luck nut	Carbon steel	Nickel plated

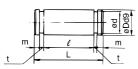
CL
CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
MLGP
RLQ
MLU
ML1C
D-
-X
20-
Data


Series CLG1 Accessory Bracket Dimensions

Single Knuckle Joint

Part no.	Applicable bore size (mm)	A	A 1	E1	L1	ММ	RR1	U1	NDH10	NX
I-G02	20	34	8.5	□16	25	M8 x 1.25	10.3	11.5	- 0	8 -0.2
I-G03	25, 32	41	10.5	□20	30	M10 x 1.25	12.8	14	10 ^{+0.058}	10 -0.2
I-G04	40	42	14	ø22	30	M14 x 1.5	12	14	10 ^{+0.058}	18 ^{-0.3}

Rod Side Pivot Bracket



Part no.	Applicable bore size (mm)	тв	Тdн9	TE	TF	тн	TN
CLG-020-24	20	42	8 ^{+0.036}	10	5.5	31	40
CLG-025-24	25	48	10 +0.036	10	5.5	37	47
CLG-032-24	32	53	12 +0.043		6.6	38.5	47
CLG-040-24	40	60	14 +0.043	10	6.6	42.5	55
	A multiple la la multiple						

Part no.	size (mm)	TR	TT	TU	т٧	тw	тх	ТΥ	ΤZ
CLG-020-24	20	13	3.2	21.2	47.8	42	26	28	50
CLG-025-24	25	15	3.2	21.3	54.8	42	28	28	57
CLG-032-24	32	17	4.5	25.6	57.4	48	28	28	61.4
CLG-040-24	40	21	4.5	26.3	65.4	56	36	30	71.4

Knuckle Pin

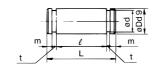
Material: Carbon steel

Part no.	bore	cable size m)	Dd	9	L	d
IY-G02	2	0	8 _0	.040 .076	21	7.6
IY-G03	25,	32	10 _0	.040 .076	25.6	9.6
IY-G04	4	0	10 _0	.040 .076	41.6	9.6
Part no.	l	m	t	Appli	cable sr	nap ring
IY-G02	16.2	1.5	0.9	Туре	C 8 for	axis
IY-G03	20.2	1.55	1.15 Type		e C 10 fo	or axis
IY-G04	36.2	1.55	1.15	Туре	e C 10 fo	or axis

Clevis Pin

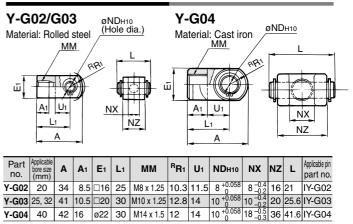
ΤN

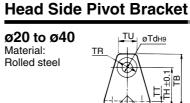
ΤX

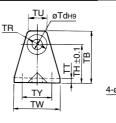

TV

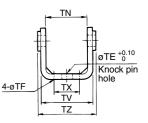
Τ7

øTE +0.10

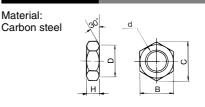

Knock pin hole


Material: Carbon steel

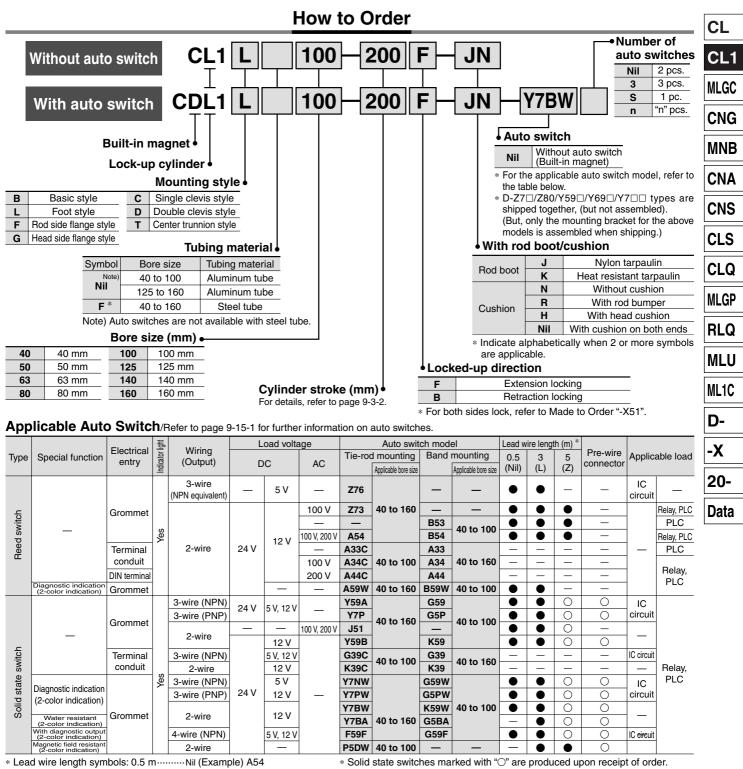



Part no.	Appli bore (m		Dd	9	L	d
CD-G02	2	0	8 _0	.040 .076	43.4	7.6
CD-G25	2	5	10 _0	.040 .076	48	9.6
CD-G03	3	2	12 _0	.050 .093	59.4	11.5
CD-G04	4	0	14 _0	.050 .093	71.4	13.4
Part no.	l	m	t	Appl	icable si	nap ring
CD-G02	38.6	1.5	0.9	Тур	e C 8 foi	r axis
CD-G25	42.6	1.55	1.15	Тур	e C 10 fo	or axis
CD-G03	54	1.55	1.15	Тур	e C 12 fo	or axis
CD-G04	65	2.05	1.15	Type	e C 14 fo	or axis

Double Knuckle Joint * Knuckle pin and snap ring are packaged.



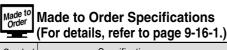
Part no.	Applicable bore size (mm)	тв	т	d	٦	ΓE	TF	тн	Т	'N
CG-020-24A	20	36	8	~		10	5.5	25	(2	9.3)
CG-025-24A	25	43	1	0		10	5.5	30	(3	3.1)
CG-032-24A	32	50	1	2		10	6.6	35	(4	0.4)
CG-040-24A	40	58	1	4		10	6.6	40	(4	9.2)
Part no.	Applicable bore size (mm)	TR	тт	т	υ	тν	тw	тх	тү	тz
CG-020-24A	20	13	3.2	18	3.1	35.8	42	16	28	38.3
CG-025-24A	25	15	3.2	20).7	39.8	42	20	28	42.1
CG-032-24A	32	17	4.5	23	6.6	49.4	48	22	28	53.8
CG-040-24A	40	21	4.5	27	'.3	58.4	56	30	30	64.6


Rod End Nut

	Part no.	Applicable bore size (mm)	в	с	D	d	н
	NT-02	20	13	15.0	12.5	M8 x 1.25	5
Ī	NT-03	25, 32	17	19.6	16.5	M10 x 1.25	6
	NT-G04	40	19	21.9	18	M14 x 1.5	8

Lock-up Cylinder Double Acting, Single Rod Series CL1 ø40, ø50, ø63, ø80, ø100, ø125, ø140, ø160

The CL1 series lock-up cylinder is a self-locking type that contains a ring that is tilted by a spring force, which is further tilted by the load that is applied to the cylinder, thus locking the piston rod. This cylinder is suitable for intermediate stops, emergency stops, or for drop prevention.


3 m ······· L (Example) A54L 5 m······ Z (Example) A54Z

• Since there are other applicable auto switches than listed, refer to page 9-3-3 for details.

• For details about auto switches with pre-wire connector, refer to page 9-15-66.

Provided with a compact lock mechanism, it is suitable for intermediate stop, emergency stop, and drop prevention.

Symbol	Specifications
-XA🗆	Change of rod end shape
-XC3	Special port location
-XC14	Change of trunnion bracket mounting position
-XC18	NPT finish piping port
-X50	Large bore lock-up cylinder
-X51	Both-directions lock-up cylinder

Model

Series	Applicable air cylinder	Bore size (mm)	Action	Lock operation	
011	CA1⊡N*	40, 50, 63, 80, 100	Double	Spring look	
CL1	CS1⊡N	125, 140, 160	acting	Spring lock	
* The Series CA1 has been changed to the Series CA2.					

Specifications

Specifications						
Bore size (mm)	40 to 100	125 to 160				
Fluid	Air					
Proof pressure	1.5 MPa	1.57 MPa				
Maximum operating pressure	1.0 MPa	0.97 MPa				
Minimum operating pressure	0.08	MPa				
Piston speed	50 to 200	0 mm/s *				
Ambient and fluid temperature	Without auto switch –10 to 70°C With auto switch –10 to 60°C (No freezing)	Without auto switch –0 to 70°C With auto switch –0 to 60°C (No freezing)				
Lubrication	Non-	Non-lube				
Cushion	Air cu	shion				
Thread tolerance	JIS cl	ass 2				
Stroke length tolerance	Up to $250^{+1.0}_{0}$, 251 to $1000^{+1.4}_{0}$, 10	001 to 1500 $^{+1.8}_{0}$, 1501 to 1600 $^{+2.2}_{0}$				
	Basic style , Axial foot style, Rod side flange style					
Mounting	Head side flange style, Single clevis style					
Double clevis style, Center trunnion style						
* Make sure to operate the cylinder in such a way that the piston speed does not exceed						

200 mm/s during locking.

The maximum speed of 500 mm/s can be accommodated if the piston is to be locked in the stationary state for the purpose of drop prevention.

Max. Load and Lock Holding Force (Max. static load)

Bore size (mm)		40	50	63	80	100	125	140	160
Max. load	Horizontal Mounting	588	981	1470	2450	3820	6010	7540	9850
(N)	Vertical Mounting	294	490	735	1230	1910	3000	3770	4920
Holdir	ng force (N) *	1230	1920	3060	4930	7700	12100	15100	19700

* The cylinder can be used to 1/2 or less of its holding force, if only a static load is applied, such as for drop prevention. Stopping Accuracy

(Not including tolerance of control system)

40 to 100

±0.6 mm

±1.2 mm

±2.3 mm

Piston speed

50 mm/s

100 mm/s

200 mm/s

Bore size (mm)

125 to 160

±1 mm

±2 mm

±3 mm

Lock-up Unit Specifications

Lock-up direction release pressure	0.2 MPa (at no load)
Lock-up direction start pressure	0.05 MPa or less
Lock-up direction direction	One direction (Lock direction can be changed.)

Lock-up Unit Model

Applicable bore size (mm)	40	50	63	80	100
Lock-up unit part no.	CL-40	CL-50	CL-63	CL-80	CL-100

Standard Stroke

Bore size (mm)	Standard stroke (mm)				
40	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500				
50, 63	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600				
80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400, 450, 500, 600, 700				

Maximum Stroke

For the maximum stroke of the CA1 series \emptyset 40 to \emptyset 100, and CS1 series \emptyset 120 to \emptyset 160, refer to Best Pneumatics Vol. 6. Note) The Series CA1 has been changed to the Series CA2.

Minimum Stroke for Auto Switch Mounting

Regarding the minimum stroke for auto switch mounting, refer to the following pages by bore size.

• Bore size/ø40 to ø100·····Refer to page of the CA2 series.

Bore size/ø125 to ø160····Refer to page of the CS1 series.

Lock-up Cylinder Double Acting, Single Rod Series CL1

Accessory

	Mounting	Basic style	Foot style	Rod side flange style	Head side flange style	Single clevis style	Double clevis style	Center trunnion style
Standard	Rod end nut *		•	•	•	•	•	
products	Clevis pin	—		-		—	•	-
	Single knuckle joint	•	•	•	•			•
Option	Double knuckle joint (with pin)	•	•	•		•	•	•
	Rod boot		•			\bullet		

* ø125 to ø160: Option

Weight

Weig	ght								(kg)
	Tubing Material	Aluminum tube							
Bore s	size (mm)	40	50	63	80	100	125	140	160
Locke	d-up unit weight	0.76	1.23	2.05	3.04	4.40	16.93	21.46	32.31
	Basic style	1.66	2.55	4.12	6.56	9.49	30.88	38.25	55.72
	Foot style	1.83	2.75	4.42	7.36	10.43	32.21	40.83	59.09
Basic weight	Rod side flange style	2.06	3.15	5.08	8.40	11.81	33.65	43.28	60.95
c Me	Head side flange style	2.09	3.29	5.16	8.51	12.06	34.35	44.32	62.98
Basi	Single clevis style	1.93	3.00	4.88	7.94	11.80	36.02	45.46	65.45
	Double clevis style	1.92	2.98	4.90	7.94	11.82	35.83	45.17	64.28
	Trunnion style	2.26	3.30	5.47	8.90	13.02	35.77	46.09	63.86
	I weight per each 100 mm of stroke	0.44	0.56	0.74	1.04	1.30	1.77	1.90	2.39
Accessory bracket	Single knuckle	0.23	0.26	0.26	0.66	0.83	0.91	1.16	1.56
Accet brac	Double knuckle (with pin)	0.37	0.43	0.43	0.87	1.27	1.37	1.81	2.48

Calculation: (Example) CL1L125-500F

- Basic weight------32.21 (ø125, Foot style) Additional weight----1.77/100 st 32.21 + 1.77/100 x 500 = 41.06 kg
- * When steel tubes measuring ø40 to ø100, and ø125 to ø160 are used, the lock-up unit weight must be added to the respective cylinder weight as in the individual cylinder weight tables on page in Best Pneumatics Vol. 6.

Auto Switch Mounting Bracket Part No.

Auto switch		Bore size (mm)								
model	40	50	63	80	100	125	140	160		
D-A5/A6/A59W D-F5□/J5□/F5NTL D-F5□W/J59W D-F5BAL/F59F	BT-04	BT-04	BT-06	BT-08	BT-08	BT-12	BT-12	BT-16		
D-A3/A44 D-G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M	BS1-125	BS1-140	BS1-160		
D-B5/B6/B59W D-G5□/K59/G5BAL D-G5□W/K59W D-G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10	_	_	_		
D-A3DC/A44C D-G39C/K39C	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100	—	—	_		
D-Z7[]/280 D-Y59[]/Y69[] D-Y7P/Y7PV D-Y7[]W D-Y7[]WV D-Y7[]WV D-Y7BAL	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080	BS4-125	BS4-125	BS4-160		
D-P5DWL	BAP2-040	BAP2-040	BAP2-063	BAP2-080	BAP2-080	—	—	—		

Mounting brackets are provided with D-A3□C, A44C, G39C, and K39C.

To order, indicate as shown below, according to the cylinder size. Example) ø40–D-A3□C-4, ø50–D-A3□C-5, ø63–D-A3□C-6, ø80-D-A3 C-8, ø100-D-A3 C-10

To order the mounting brackets separately, use the part number shown above.

[Mounting screws set made of stainless steel]

The following set of mounting screws made of stainless steel is also available. Use it in accordance with the operating environment.

(Please order the mounting band separately, since it is not included.)

BBA1: For D-A5/A6/F5/J5

BBA3: For D-B5/B6/G5/K5

"D-F5BAL/G5BAL" switch is set on the cylinder with the stainless steel screws above when shipped.

When only a switch is shipped independently, "BBA1" or "BBA3" screws are attached.

Mounting Bracket Part No.

0										
Bore s	size (mm)	40	50	63	80	100	125	140	160	
Foot *	Rod side	CA-L04	CA-L05	CA-L06	CA-L08	CA-L10	CS1-L12	CS1-L12 CS1-L14	001.144	001.140
style	Head side	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10		651-L14	C31-L10	
Rod side f	lange style **	CA-F04	CA-F05	CA-F06	CA-F08	CA-F10	CS1-F12	CS1-F14	CS1-F16	
Head sid	e flange style	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10	CS1-F12	CS1-F14	CS1-F16	
Single	clevis	CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10	CS1-C12	CS1-C14	CS1-C16	
Double clevis ***		CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10	CS1-D12	CS1-D14	CS1-D16	

* When ordering foot bracket for 1 cylinder, order 1 foot bracket each for the rod side and the head side for ø40 to ø100 (with different part no.) and 2 foot brackets for ø125 to ø160.

** The ø125 to ø160 rod side flange styles use the long stroke flanges of the CS1 series.

*** Clevis pin, plain washer and cotter pin are shipped together with double clevis style.

Regarding the installation position and the mounting height of the auto switch,

 Bore sizes ø40 to ø100 are the same as Series CDA1. Bore sizes ø125 to ø160 are the same as Series CDS1.

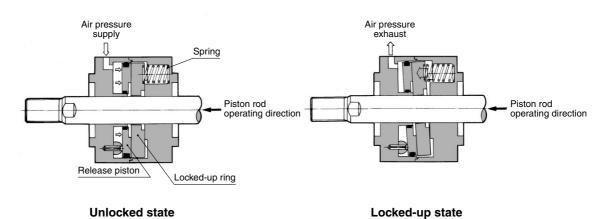
Note) The Series CA1 has been changed to the Series CA2.

CL CL1 MLGC CNG MNB CNA CNS CLS CLQ MLGP RLQ MLU ML1C D-

-Х

20-

Data

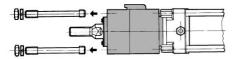


Rod Boot Material

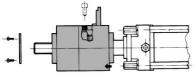
Symbol	Rod boot material	Max. ambient temperature
J	Nylon tarpaulin	70°C
Κ	Heat resistant tarpaulin	110°C
* Movim	im ambient tompore	ture for the red best itself

Maximum ambient temperature for the rod boot itself.

Construction Principle

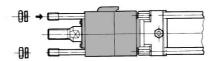

A Caution Caution on Changing the Lock-up Direction

ø40 to ø100


The lock-up is unidirectional. However, the lock-up direction can be changed easily. To change the direction, pay particular attention to the following steps:

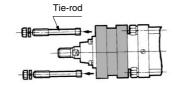
Loosening the tie-rods for the purpose of changing the direction could also loosen the nuts on the cylinder side. Therefore, before assembling the unit, make sure to verify that the nuts on the cylinder are not loose. Retighten the nuts if they are loose, and while turning the piston rod, apply a low pressure of 0.08 MPa to make sure that it operates smoothly in both the extending and retracting directions.

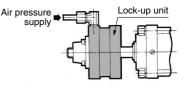
1. Loosen the tie-rod nuts and pull out the four tie-rods.


2. Open the rubber cap and screw in the unlocking bolt, which is provided as an accessory part. At this time, apply air pressure of 0.2 MPa to 0.3 MPa to disengage the lock and insert the bolt. (The operation to follow can be performed properly and easily with the application of air pressure.) After verifying that the bolt has been inserted properly, pull out the unit from the rod. Then, loosen the three screws in the scraper presser plate to remove the presser plate and the presser plate, in that order, on the opposite side.

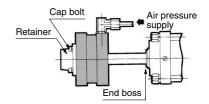
Caution

When the lock-up unit is not secured by the tie-rods, the air pressure applied to the lock-up port should be between 0.2 MPa and 0.3 MPa. Never supply a higher air pressure as it could lead to equipment damage.

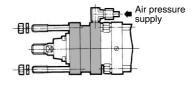

- Turn the unit to the opposite end so that the end without the scraper is facing the cylinder rod cover. Then, securely insert the unit into the end boss portion of the rod cover.
- 4. Install four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque. Until the installation and adjustment have been completed, never pull out the unlocking bolt (or release the air pressure).


The processes described above complete the changing of the locked-up direction. Before using the cylinder, make sure that the lock-up operates properly.

ø125 to ø160


1. Loosen the tie-rod nuts and pull out the four tie-rods.

2. Apply air pressure of 0.2 MPa to 0.3 MPa to disengage the lock and pull out the lock-up unit from the piston rod.



3. Remove the retainer plate from the lock-up unit and install the retainer plate on the opposite end. Reapply the air pressure, and with the end on which the retainer plate had, until now, been facing towards the cylinder, insert the locked-up unit into the piston rod and fit it into the end boss portion of the rod cover.

4. Install the four tie-rods, with their shorter threaded portion oriented towards the rod cover, and tighten them with uniform torque.

Maintain the application of air pressure until the installation and adjustment have been completed, and never actuate the lock in the meantime.

CL

Manual Lock Release (ø40 to ø100)

To manually disengage the lock, perform the following steps:

- 1. Open the rubber cap.
- 2. Apply 0.2 MPa to 0.3 MPa of air pressure to the locking port, and bring the tilted ring upright.
- 3. Screw a bolt of an appropriate length into the ring tap.

The bolt size is M5 for ø40 and ø50, and M6 for ø63, ø80, and ø100.

start of the operation to the next position

is short (approximately 30 mm, although

it could vary according to conditions) be

aware of the possibility of being unable

to attain the level of accuracy shown in

piston has been stopped with an

To apply the lock-up after the piston has

been stopped by an external stopper

other than the locked-up mechanism,

including stoppage by the stroke end of

the cylinder, be aware of the matters

Due to the nature of the lock-up

mechanism, there is an axial play of

about 0.5 to 1.0 mm. Furthermore, due

to pipe routing conditions, if it takes

longer for the air to discharge through

the lock-up port than for the balance

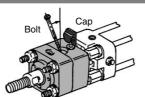
pressure to stabilize, causing a delay in

locking, the piston rod will move for an

amount that is equivalent to the "play +

Piston speed over 200 mm/s (When locking) 4. Immediately before a lock stop, drop the piston speed to 200 mm/s or lower by switching the speed controller (to the bypass circuit). Then, operate the

3. Precautions regarding lock-up after the


the specifications column.

external stopper:

described below.

delay".

lock-up.

ø40 to ø100

(On cylinders ø125 to ø160, the lock

cannot be disengaged manually.)

A Caution

During installation adjustment, perform the operation by applying air pressure only to the lock-up port.

- CL1 Caution Recommended Pneumatic Circuit/Caution on Handling MLGC For recommended pneumatic circuit, stopping accuracy and caution on handling, refer to pages 9-2-6 to 9-2-7. CNG ▲Caution Caution **Stopping Accuracy** Caution on Handling 1. Load fluctuations during the reciprocal 1. Flushing 2. Lock-up direction movement of the piston could cause the Before piping is connected, it should be The lock-up is unidirectional. The piston speed to change. A change in the thoroughly blown out with air (flushing) locking direction is in accordance with piston speed could greatly increase the or washed to remove cutting chip, the position of the lock-up port, as variance in the piston's stopping shown in the figure below. cutting oil and other debris from inside position. Therefore, perform the the pipe. Lock-up port installation and adjustment operations 2. The load on the piston rod so as not to create any load fluctuations Use the cylinder in the state in which during the piston's reciprocal movement, the load to the piston rod is always particularly just before stopping. applied in the axial direction. This must 2. During a cushioning stroke, or when the be more strictly adhered to than with piston is in the acceleration region ordinary air cylinders. Furthermore, use following the start of its travel, there is a a guide to control the movement of the load so as not to cause chatter or twist. large change in speed. Thus, the Lock-up unit Cylinder variance in the stopping position will 3. A rotational force against the piston rod also be large. Therefore, to effect a step Avoid applying a rotational force movement in which the stroke from the **Extension locking**

 - be given to the slide part of the guide rod, as this could damage the seals and lead to leaks or faulty lock-up.
 - cause faulty lock-up.

Recommended Pneumatic Circuit

For recommended pneumatic circuits, refer to page 9-2-6.

1. Operating the pneumatic circuit Instead of the conventional reciprocal air cylinder circuit, use an pneumatic circuit, such as the recommended circuit, in which measures are taken to prevent the piston from lurching after the lock-up has been disengaged.

ø125 to ø160

For cylinders ø40 to ø100, verify the \leftarrow portion that is stamped on the cap of the lock.

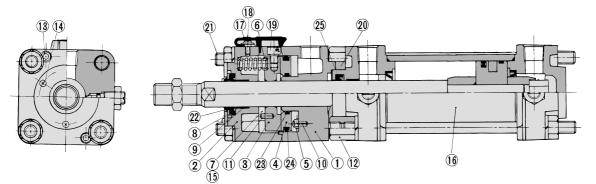
Retraction locking

Lock-up port

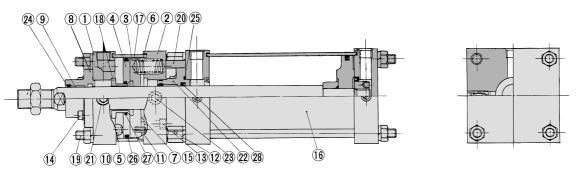
- 3. Maximum speed and maximum load Never lock up a cylinder that involves a kinetic energy that exceeds the maximum speed or the maximum load indicated in the specifications.
- 4. After completing the installation adjustment, do not forget to remove the bolt that was used for disengaging the lock. (ø40 to ø100 only)

- against the piston rod. In particular, the application of a rotational force must be prevented when in a lock-up state.
- 4. Protecting the sliding portion of the rod Use caution that no scratch or dent will
- 5. Lubrication

It is not necessary to lubricate the CL series because it is the non-lube style. Never lubricate it because doing so will



MNB CNA CNS CLS CLQ MLGP RLQ MLU ML1C D--Х 20-


Data

Construction

CL1ø40 to ø100

CL1ø125 to ø160

Component Parts: CL1ø40 to ø100

No.	Description	Material	Note
1	Body	Aluminum alloy	Black painted
2	Cover	Aluminum alloy	Black painted
3	Locked-up ring	Carbon steel	Heat treated
4	Release piston	Rolled steel	Zinc chromated
5	Pivot	Carbon steel	Heat treated, zinc chromated
6	Spring	Steel wire	Zinc chromated
\bigcirc	Stopper	Urethane	
8	Retaining plate	Rolled steel	Black zinc chromated
9	Bushing	Lead-bronze casted	
10	Spring pin	Carbon steel	JIS B 2808
11	Spring pin for non-rotating	Carbon steel	JIS B 2808
12	Wing nut	Rolled steel	Black zinc chromated
(13)	Unit fixing hex. socket head cap screw	Chromium molybdenum steel	
14	Retainer machine screw	Rolled steel	
15	Hexagon socket countersunk head screw	Chromium molybdenum steel	
16	Non lube air cylinder		Series CA1□N
17	cap	Nylon	
18	Cap screw	Rolled steel	
(19)	release bolt	Chromium molybdenum steel	
20	Spacer	Aluminum alloy	Black painted
21)	Unit holding tie-rod	Carbon steel	Chromated
22	Scraper	NBR	
23	O-ring	NBR	
24	O-ring	NBR	
(25)	Rod seal	NBR	

Note) Please consult with SMC when disassembling fine locked-up unit.

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Bore size (mm)	Kit no.
40	40 CL40-PS		CL100-PS
50	50 CL50-PS		CL125-PS
63	63 CL63-PS		CL140-PS
80	CL80-PS	160	CL160-PS

* Since the lock section for Series CL1 is normally replaced as a unit, kits are for the cylinder section only. These can be ordered using the order number for each bore size.

Component Parts: CL1ø125 to ø160

No.	Description	Material	Note
1	Body	Rolled steel plate	Black painted
2	Cover	Rolled steel plate	Black painted
3	Locked-up ring	Carbon steel	Heat treated
4	Release piston	Rolled steel plate	Zinc chromated
(5)	Pivot	Carbon steel	Heat treated
6	Spring	Steel wire	Zinc chromated
\bigcirc	Stopper	Urethane	
8	Retaining plate	Cast iron	Black painted
9	Bushing	Lead-bronze casted	—
10	Spring pin	Carbon steel	JIS B 2808
1	Spring pin	Carbon steel	JIS B 2808
12	Wing nut	Rolled steel	Black zinc chromated
(13)	Unit fixing hex. socket head cap screw	Chromium molybdenum steel	Zinc chromated
14)	Hex. socket head cap screw	Chromium molybdenum steel	Black zinc chromated
15	Hexagon socket countersunk head screw	Chromium molybdenum steel	Zinc chromated
16	Non lube air cylinder	—	Serie CS1⊡N
17	Brake tube	Carbon steel tube	Inside: Hard chrome plated
18	Sleeve	Rolled steel	Zinc chromated
(19)	Unit holding tie-rod	Carbon steel	Chromated
20	Spacer	Rolled steel	Black painted
21)	Hexagon socket head plug	Rolled steel	Black zinc chromated
22	Retaining plate	Cast iron	Black painted
23	Element	Sintered metallic BC	—
24)	Wiper ring	NBR	
25	Retaining plate gasket	NBR	
26	O-ring	NBR	
27	O-ring	NBR	
	Rod seal	NBR	

Note) Please consult with SMC when disassembling fine lock-up unit.

CL

CL1

MLGC

CNG

MNB

CNA

CNS

CLS

CLQ

MLGP

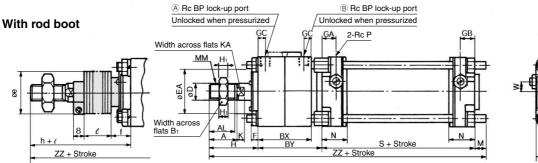
RLQ

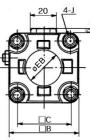
MLU

ML1C

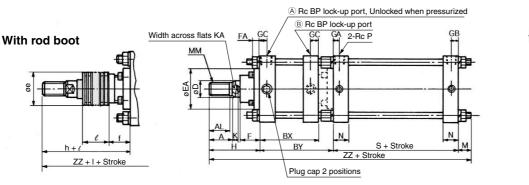
D-

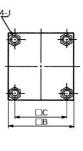
-X


20-

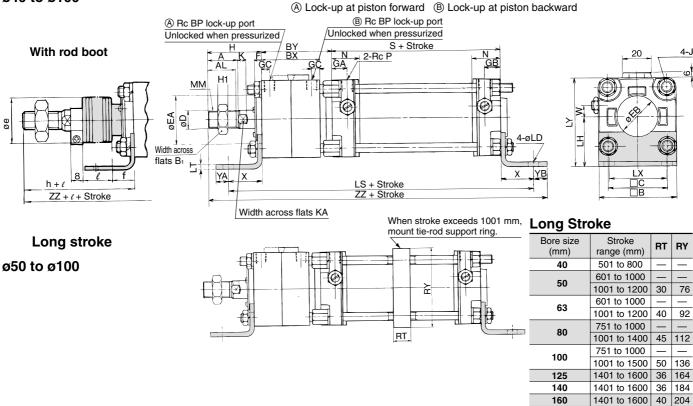

Lock-up Cylinder Double Acting, Single Rod Series CL1

Basic Style (B)

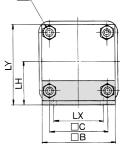

ø40 to ø100


A Lock-up at piston forward B Lock-up at piston backward

ø125 to ø160



																									_
	0	1	1					_																	Data
Bore size (mm)	<u> </u>		nge (m With ro		Α	AL	в	B1	вх	BY	BP	с	D	EA	EB	F	FA	GA	GB	GC	Hı	J	к	KA	
40	Up to	500	20 to	500	30	27	60	22	59	69	1/4	44	16	40	32	6.5	-	15	15	11	8	M8 x 1.25	6	14	
50	Up to	600	20 to	600	35	32	70	27	67	78	1/4	52	20	50	40	6.0	—	17	17	11	11	M8 x 1.25	7	18	
63	Up to	600	20 to	600	35	32	86	27	73	84	1/4	64	20	55	40	6.0	—	17	17	11	11	M10 x 1.25	7	18	
80	Up to	750	20 to	750	40	37	102	32	77	92	1/4	78	25	65	52	8.0	—	21	21	11	13	M12 x 1.75	11	22	
100	Up to	750	20 to	750	40	37	116	41	85	100	1/4	92	30	80	52	8.0	—	21	21	11	16	M12 x 1.75	11	26	
125	Up to	1000	30 to	1000	50	47	145	—	112.5	141.5	1/2	115	36	90	—	43	14	16	16	16	—	M14 x 1.5	15	31	
140	Up to	1000	30 to	1000	50	47	161	—	121	150	1/2	128	36	90	—	43	14	16	16	16	—	M14 x 1.5	15	31	
160	Up to	1200	30 to	1200	56	53	182	_	133	167	3/4	144	40	90	—	43	14	18.5	18.5	18.5	—	M16 x 1.5	17	36	
								14/211				14/					Ν	lote)	In inst	alling	an a	ir cylinder, if	a hole	must	
Bore size (mm)	м	М	М	Ν	Ρ	S	w	Witho	ut rod bo	_	1		th rod h	boot l		ZZ						ccommoda sure to mac			
40	11	M14	x 1.5	27	1/4	84	8	51	215	36	5 16	6.5	59	1/4 stro	oke 2	223			•			than the			
50	11	M18	x 1.5	30	3/8	90	0	58	237	45	5 16	6.0	66	1/ ₄ stro	oke 2	245			diame	ter "ø	e".				
63	14	M18	x 1.5	31	3 _{/8}	98	0	58	254	45	i 16	6.0	66	¹ /4 stro	oke 2	262									
80	17	M22	x 1.5	37	1/2	116	0	71	296	60	18	3.0	80	1/ ₄ stro	oke 🕄	305									
100	17	M26	x 1.5	40	1/2	126	0	72	315	60	18	3.0	81	¹ /4 stro	oke 🕄	324									
125	27	M30	x 1.5	35	1/2	98	_	110	376	.5 75	6 40) 1	33	1/ ₅ stro	oke 🕄	399.5									
140	27	M30	x 1.5	35	1/2	98	_	110	385	75	6 40) 1	33	¹ / ₅ stro	oke 4	408									
160	30.5	M36	x 1.5	39	3 _{/4}	106	—	120	423	.5 75	6 40) 1	41	¹ / ₅ stro	oke 4	444.5									


Series CL1

Axial Foot Style (L)

ø40 to ø100

Note) ø125 to ø160 with auto switch type is not available. ø125 to ø160 (A) BP BP lock-up port, Unlocked when pressurized B BP BP lock-up port With rod boot 4-J BY S + Stroke ĞВ GC ĢÇ GΑ Long stroke FA MM - the second sec ٢ 申 2-Rc P Ŧ μ øD Øe ۲ X ۲ - 4-øLD ≽ Ξ ۲ Ø F 挣 Width across flats KA Plug cap 2 positions Х ΥA ВΧ _N_ RŢ N Х ΥB f LS + Stroke ZZ + Stroke h + ℓ ZZ + ℓ + Stroke

Bore size	Stroke ra	nge (mm)		AL	в	B1	вх	вү	вр	с	D	EA	EB	F	FA	GA	GB	GC	Hı	J	к	KA	LD	LH
(mm)	Without rod boot	With rod boot	A	AL	Р	DI		ы	DF			EA	CD	Г	FA	GA	GD	uc	- 11	J	r	ΓА		LU
40	Up to 500	20 to 500	30	27	60	22	59	69	1/4	44	16	40	32	6.5	—	15	15	11	8	M8 x 1.25	6	14	9	40
50	Up to 600	20 to 600	35	32	70	27	67	78	1/4	52	20	50	40	6.0	—	17	17	11	11	M8 x 1.25	7	18	9	45
63	Up to 600	20 to 600	35	32	86	27	73	84	1/4	64	20	55	40	6.0	—	17	17	11	11	M10 x 1.25	7	18	11.5	50
80	Up to 750	20 to 750	40	37	102	32	77	92	1/4	78	25	65	52	8.0	—	21	21	11	13	M12 x 1.75	11	22	13.5	65
100	Up to 750	20 to 750	40	37	116	41	85	100	1/4	92	30	80	52	8.0	—	21	21	11	16	M12 x 1.75	11	26	13.5	75
125	Up to 1400	30 to 1400	50	47	145	—	112.5	141.5	1/2	115	36	90	—	43	14	16	16	16	—	M14 x 1.5	15	31	19	85
140	Up to 1400	30 to 1400	50	47	161	—	121	150	¹ /2	128	36	90	—	43	14	16	16	16	_	M14 x 1.5	15	31	19	100
160	Up to 1400	30 to 1400	56	53	182	—	133	167	3/4	144	40	90	—	43	14	18.5	18.5	18.5	—	M16 x 1.5	17	36	19	106

Bore size	LS	ιт	LX	LY	мм	N	Р	s	w	х	YA	ΥВ	Without	rod boot		'	With	rod boot	
(mm)	L3			LT	IVIIVI	IN	P	э	vv	^	TA	тв	Н	ZZ	е	f	h	l	ZZ
40	207	3.2	42	70	M14 x 1.5	27	1/4	84	8	27	13	13	51	244	36	16.5	59	¹ / ₄ stroke	252
50	222	3.2	50	80	M18 x 1.5	30	3/8	90	0	27	13	13	58	266	45	16.0	66	1/4 stroke	274
63	250	3.2	59	93	M18 x 1.5	31	³ /8	98	0	34	16	16	58	290	45	16.0	66	¹ / ₄ stroke	298
80	296	4.5	76	116	M22 x 1.5	37	1/2	116	0	44	21	16	71	339	60	18.0	80	1/4 stroke	348
100	312	6.0	92	133	M26 x 1.5	40	1/2	126	0	43	22	17	72	358	60	18.0	81	¹ / ₄ stroke	367
125	329.5	8	100	157.5	M30 x 1.5	35	1/2	98		45	20	20	110	414.5	75	40	133	¹ / ₅ stroke	437.5
140	338	9	112	180.5	M30 x 1.5	35	1/2	98	_	45	30	30	110	433	75	40	133	¹ / ₅ stroke	456
160	373	9	118	197	M36 x 1.5	39	3/4	106	—	50	25	25	120	468	75	40	141	¹ / ₅ stroke	489

9-3-8

CL

CL1

MLGC

CNG

CNA

CNS

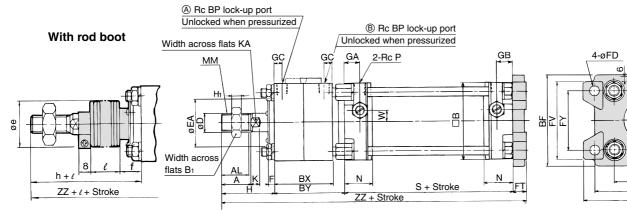
CLS

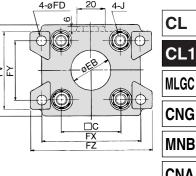
CLQ

MLGP

RLQ

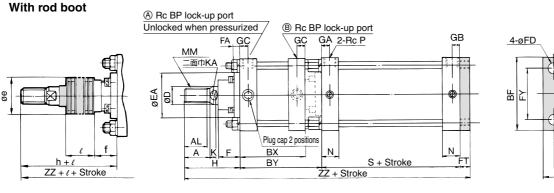
MLU

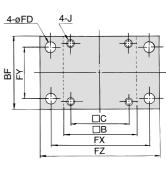

ML1C


Lock-up Cylinder Double Acting, Single Rod Series CL1

Head Side Flange Style (G)

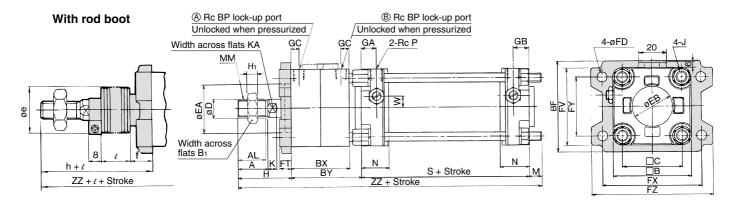
ø40 to ø100


(A) Lock-up at piston forward (B) Lock-up at piston backward

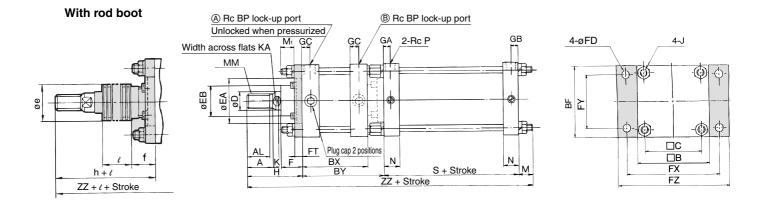


20

ø125 to ø160


D-
-X
20-
Data

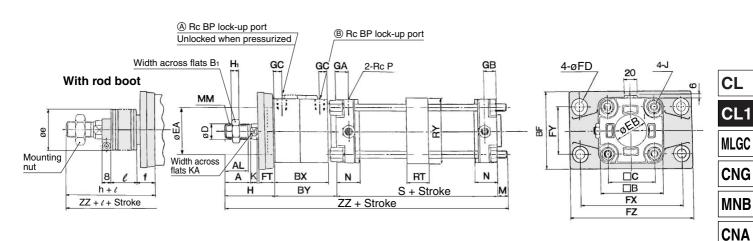
Bore size	Stroke ra	nge (m	חm)	Α	AL	в	Bı	BF	BF	В	хв	r c	D	EA	EB	F	FA	FD	FT	FX	FY	FZ	FV	GA	GB	GC	Hı
(mm)	Without rod boot	With ro	od boot	^	AL	Р	DI	БГ		- D.	^ P					F	ГА		гі	FA	ГТ	ГД	гv	GA	GD	ac	- 11
40	Up to 500	20 to	o 500	30	27	60	22	71	1 1/2	1 59	9 69	4	4 16	40	32	6.5	_	9.0	12	80	42	100	60	15	15	11	8
50	Up to 600	20 to	o 600	35	32	70	27	81	I 1/2	1 67	7 78	5	2 20	50	40	6.0	_	9.0	12	90	50	110	70	17	17	11	11
63	Up to 600	20 to	o 600	35	32	86	27	101	I 1/2	1 73	3 84	6	4 20	55	40	6.0	_	11.5	15	105	59	130	86	17	17	11	11
80	Up to 750	20 to	o 750	40	37	102	32	119	3 1/2	1 77	7 92	7	3 25	65	52	8.0	_	13.5	18	130	76	160	102	21	21	11	13
100	Up to 750	20 to	o 750	40	37	116	41	133	3 1/2	1 85	5 100	92	2 30	80	52	8.0	_	13.5	18	150	92	180	116	21	21	11	16
125	Up to 1000	30 to	1000	50	47	145	—	145	5 1/2	2 112	2.5 141	.5 11	5 36	90	-	43	14	19	14	190	100	230	—	16	16	16	—
140	Up to 1000	30 to	1000	50	47	161	—	160) 1/2	2 121	1 150	12	3 36	90	-	43	14	19	20	212	112	255	—	16	16	16	—
160	Up to 1200	30 to	1200	56	53	182	—	180) 3/2	133 µ	3 167	14	4 40	90	—	43	14	19	20	236	118	275	—	18.5	18.5	18.5	—
Poro oizo											Without	rad boat		v	Vith rc	d boc	. t		1.1								
Bore size (mm)	J	к	КА	N	ИM	N	F	•	s	w	Without H	rod boot ZZ	е	V f	Vith ro h	d boc l		ZZ									
	J M8 x 1.25	к 6	KA 14		/IM - x 1.5			> /4	S 84	W 8	Н		-	V f 16.5		l		-									
(mm)	-			M14		5 27	7 1,	/4	-		H 51	ZZ	36	f	h	l	roke	224									
(mm) 40	M8 x 1.25	6	14	M14 M18	x 1.5	5 27 5 30	7 1,) 3,	/4	84	8	H 51 58	ZZ 216	36 45	f 16.5	h 59	<i>l</i> ¹ /4 st	roke roke	224									
(mm) 40 50	M8 x 1.25 M8 x 1.25	6 7 7	14 18	M14 M18 M18	x 1.5	5 27 5 30 5 31	7 1,) 3, 3,	/4 /8 /8	84 90	8 0	H 51 58	ZZ 216 238 255	36 45 45	f 16.5 16.0	h 59 66	<i>1</i> /4 st 1/4 st 1/4 st	roke roke	224 246 263									
(mm) 40 50 63	M8 x 1.25 M8 x 1.25 M10 x 1.25	6 7 7 11	14 18 18	M14 M18 M18 M22	x 1.5 x 1.5 x 1.5	5 27 5 30 5 31 5 37	7 1, 3, 3, 3, 7 1,	/4 /8 /8 /2	84 90 98	8 0 0	H 51 58 58 71	ZZ 216 238 255	36 45 45 60	f 16.5 16.0 16.0	h 59 66 66	<i>l</i> 1/4 st 1/4 st 1/4 st 1/4 st	roke roke roke	224 246 263 306									
(mm) 40 50 63 80	M8 x 1.25 M8 x 1.25 M10 x 1.25 M12 x 1.75	6 7 7 11	14 18 18 22	M14 M18 M18 M22 M26	x 1.5 x 1.5 x 1.5 x 1.5	5 27 5 30 5 31 5 37 5 40	7 1, 3, 3, 3, 7 1, 0 1,	/4 /8 /8 /2	84 90 98 116	8 0 0 0	H 51 58 58 71 72	ZZ 216 238 255 297	36 45 45 60 60	f 16.5 16.0 16.0 18.0 18.0	h 59 66 66 80	<i>l</i> 1/4 st 1/4 st 1/4 st 1/4 st 1/4 st	roke roke roke roke	224 246 263 306									
(mm) 40 50 63 80 100	M8 x 1.25 M8 x 1.25 M10 x 1.25 M12 x 1.75 M12 x 1.75	6 7 7 11 11	14 18 18 22 26	M14 M18 M18 M22 M26 M30	x 1.5 x 1.5 x 1.5 x 1.5 x 1.5 x 1.5	5 27 5 30 5 31 5 37 5 40 5 35	7 1/ 0 3/ 1 3/ 7 1/ 7 1/ 0 1/ 5 1/	/4 /8 /8 /2 /2	84 90 98 116 126	8 0 0 0 0	H 51 58 58 71 72	ZZ 216 238 255 297 316 363.5	36 45 45 60 60 75	f 16.5 16.0 16.0 18.0 18.0 40	h 59 66 66 80 81	<i>l</i> 1/4 st 1/4 st 1/4 st 1/4 st 1/4 st 1/5 st	roke roke roke roke roke	224 246 263 306 325 386.5									


Rod Side Flange Style (F)

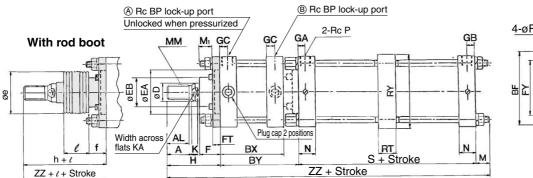
ø40 to ø100

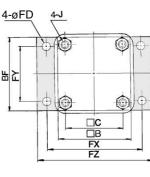
(A) Lock-up at piston forward (B) Lock-up at piston backward

ø125 to ø160



Bore size			ange (<u> </u>		Long stroke		A	AL	в	B1	BF	вр	вх	вү	с	D	EA	E	BF	F) F	FT	FX	FY	FZ
(mm)	Without	rod boo	t With	rod bo	ot	range (mm))																	• •		
40	Up to	o 500	20	to 500)	501 to 800		30	27	60	22	71	1/4	59	69	44	16	40) 32	2 -	- 9.	0 1	12	80	42	100
50	Up to	o 600	20	to 600)	601 to 1000)	35	32	70	27	81	1/4	67	78	52	20	50) 40	0 —	- 9.	0	12	90	50	110
63	Up to	o 600	20	to 600)	601 to 1000)	35	32	86	27	101	1/4	73	84	64	20	55	5 40	0 —	- 11.	5 1	15	105	59	130
80	Up to	o 750	20	to 750)	751 to 1000)	40	37	102	32	119	1/4	77	92	78	25	65	5 52	2 —	- 13.	5 1	18	130	76	160
100	Up to	o 750	20	to 750)	751 to 1000)	40	37	116	41	133	1/4	85	100	92	30	80) 52	2 –	- 13.	5 1	18	150	92	180
125	Up to	1400	30 1	to 140	0	_		50	47	145	_	145	1/2	112.5	141.5	115	36	90) 59	9 43	3 19	-	14	190	100	230
140	Up to	1400	30 1	to 140	0	—		50	47	161	_	160	1/2	121	150	128	36	90) 59	9 43	3 19	2	20	212	112	255
160	Up to	1400	30 1	to 140	0	—		56	53	182	—	180	³ /4	133	167	144	40	90) 59	9 43	3 19	2	20	236	118	275
Dava sina																	Without				A /' 11		t			
Bore size																										
(mm)	FV	GA	GB	GC	H1	J	К	KA	м	M1	MN	Λ	N	Р	s	w	H	TOO DOOT	е	f	Nith ro	od bo	l l		zz	
(mm) 40	FV 60	GA 15	GB 15	GC 11	H1 8	J M8 x 1.25	к 6	KA 14	M 11	M1	MN M14 ×		N 27	P	S 84	W 8	Н		e 36	f 16.5			l strol		ZZ 23	
		-	-			-						: 1.5			-	w	H 51	ZZ	-	f	h	1/4	l	ke 2		
40	60	15	15	11	8	M8 x 1.25		14	11	-	M14 x	: 1.5 : 1.5	27	1/ ₄	84	W 8	H 51 58	ZZ 215	36	f 16.5	h 59	1/4 1/4	ℓ strol	ke 2 ke 2	23	
40 50	60 70 86	15 17	15 17	11 11	8 11	M8 x 1.25 M8 x 1.25		14 18	11 11	-	M14 x M18 x	: 1.5 : 1.5 : 1.5	27 30	1/4 3/8 3/8	84 90	W 8 0	H 51 58 58	ZZ 215 237	36 45	f 16.5 16.0	h 59 66	1/4 1/4 1/4	ℓ strol	ke 2 ke 2 ke 2	23 45	
40 50 63	60 70 86 102	15 17 17	15 17 17	11 11 11	8 11 11	M8 x 1.25 M8 x 1.25 M10 x 1.25	6 7 7	14 18 18	11 11 14	_ _ _	M14 x M18 x M18 x	(1.5 (1.5 (1.5) (1.5) (1.5)	27 30 31	¹ / ₄ ³ / ₈ ³ / ₈ ¹ / ₂	84 90 98	8 0 0	H 51 58 58	ZZ 215 237 254 296	36 45 45	f 16.5 16.0 16.0	h 59 66 66	1/4 1/4 1/4 1/4	ℓ strol strol	ke 2 ke 2 ke 2 ke 3	23 45 62	
40 50 63 80	60 70 86 102	15 17 17 21	15 17 17 21	11 11 11 11 11	8 11 11 13	M8 x 1.25 M8 x 1.25 M10 x 1.25 M12 x 1.75	6 7 7 11	14 18 18 22	11 11 14 17	_ _ _	M14 x M18 x M18 x M22 x	 1.5 1.5 1.5 1.5 1.5 1.5 	27 30 31 37	¹ / ₄ ³ / ₈ ³ / ₈ ¹ / ₂	84 90 98 116	 W 8 0 0 0 0 	H 51 58 58 71 72	ZZ 215 237 254 296	36 45 45 60 60	f 16.5 16.0 16.0 18.0	h 59 66 66 80	1/4 1/4 1/4 1/4 1/4	ℓ strol strol strol	ke 2 ke 2 ke 3 ke 3	23 45 62 05	
40 50 63 80 100	60 70 86 102 116	15 17 17 21 21	15 17 17 21 21	11 11 11 11 11 11	8 11 11 13 16	M8 x 1.25 M8 x 1.25 M10 x 1.25 M12 x 1.75 M12 x 1.75	6 7 7 11 11	14 18 18 22 26	11 11 14 17 17	_ _ _ _	M14 x M18 x M18 x M22 x M26 x	 1.5 1.5 1.5 1.5 1.5 1.5 1.5 	27 30 31 37 40	1/4 3/8 3/8 1/2 1/2	84 90 98 116 126	 W 8 0 0 0 0 	H 51 58 58 71 72 110	ZZ 215 237 254 296 315	36 45 45 60 60 75	f 16.5 16.0 16.0 18.0 18.0	h 59 66 66 80 81	1/4 1/4 1/4 1/4 1/4 1/4	l strol strol strol strol strol	ke 2 ke 2 ke 3 ke 3 ke 4	23 45 62 05 24	


Lock-up Cylinder Double Acting, Single Rod Series CL1


Rod Side Flange Style (F)/Long Stroke

ø50 to ø100

ø125 to ø160

RLQ
MLU
ML1C
D-
-X
20-

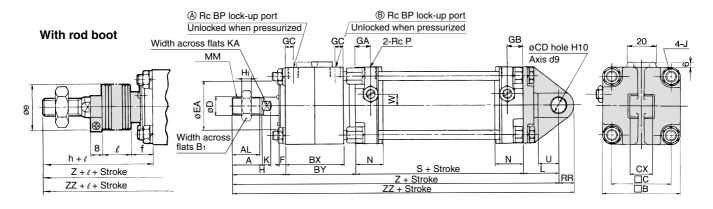
Data

CNS

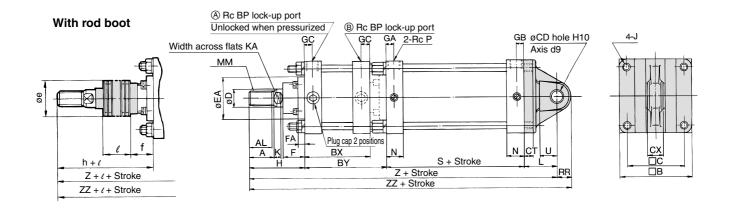
CLS

CLQ

MLGP


Bore size (mm)	Stroke range	Α	AL	в	B1	BF	ΒР	вх	ВΥ	с	D	EA	EB	F	FD	FT	FX	FY	FZ	GA	GB	GC	Hı	J	к	КА
50	1001 to 1200	35	32	70	27	88	1/4	67	78	52	20	50	40	—	9.0	20	120	58	144	17	17	11	11	M8 x 1.25	7	18
63	1001 to 1200	35	32	86	27	105	1/4	73	84	64	20	55	40	—	11.5	23	140	64	170	17	17	11	11	M10 x 1.25	7	18
80	1001 to 1400	40	37	102	32	124	1/4	77	92	78	25	65	52	—	13.5	28	164	84	198	21	21	11	13	M12 x 1.75	11	22
100	1001 to 1500	40	37	116	41	140	1/4	85	100	92	30	80	52	—	13.5	29	180	100	220	21	21	11	16	M12 x 1.75	11	26
125	1401 to 1600	50	47	145	—	145	¹ /2	112.5	141.5	115	36	90	59	43	19	14	190	100	230	16	16	16	_	M14 x 1.5	15	31
140	1401 to 1600	50	47	161	—	160	1/ ₂	121	150	128	36	90	59	43	19	20	212	112	255	16	16	16	—	M14 x 1.5	15	31
160	1401 to 1600	56	53	182	—	180	³ /4	133	167	144	40	90	59	43	19	20	236	118	275	18.5	18.5	18.5	_	M16 x 1.5	17	36
Bore size (mm)	Stroke range	М	M1	Ν	лм	N	P	R	T RY	S	w	Witho H	ut rod boo ZZ	-	f	With h	n rod	boot ℓ		zz						
50	1001 to 1200	6	—	M18	8 x 1.5	5 30) 3/8	3 30) 76	3 90	0	67	7 241	45	16.0	66	3 ¹ /4	strol	(e 2	40						
63	1001 to 1200	10	—	M18	3 x 1.5	5 31	3/8	3 40) 92	2 98	0	71	1 263	45	16.0	0 66	3 1/4	, stroł	(e 2	58						
80	1001 to 1400	12	_	M22	2 x 1.5	5 37	⁷ 1/2	2 45	5 112	2 116	0	87	7 307	60	18.0	0 80) 1/4	strol	ke 3	00						
100	1001 to 1500	12	—	M26	6 x 1.5	5 40) 1/2	2 50) 136	6 126	0	89	9 327	60	18.0	81	1 1/4	, strol	ke 3	19						
125	1401 to 1600	30	22	M30) x 1.5	5 35	5 1/2	2 36	5 164	1 98		110	379.5	5 75	40	133	3 ¹ /5	strol	ke 4	02.5						
140	1401 to 1600	24	19	M3C) x 1.5	5 35	5 1/2	2 36	5 184	1 98		110	382	75	40	133	3 1/5	; strol	ke 4	05						
160	1401 to 1600	26	22	M36	6 x 1.5	5 39	3/2	45	5 204	106	—	120	O 419	75	40	141	1 1/5	; strol	ke 4	40						
) Bore size ø	40 a	nd bo	ore siz	zes ø	125 t	hrou	gh ø1	160 w	ith au	to sv	vitch	are n	ot av	ailab	le.										

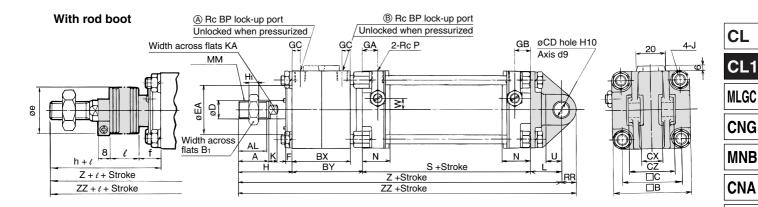
(A) Lock-up at piston forward (B) Lock-up at piston backward


Single Clevis Style (C)

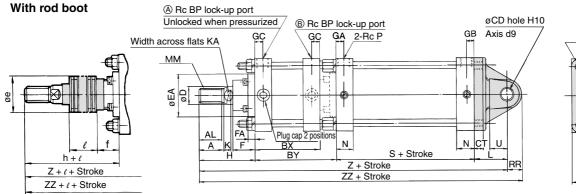
ø40 to ø100

(A) Lock-up at piston forward (B) Lock-up at piston backward

ø125 to ø160


Bore size	Stroke ra	nge (m	nm)	А	AL	в	B1	вр	вх	вү	с	с	n	ст	С	v	D	EA	F	FA	GA	GB	GC	H1
(mm)	Without rod boot	With ro	od boot	A	AL	Б	DI	DF	DA	БТ	C	U	U		U.	^		EA	Г	ГА	GA	GD	uc	H 1
40	Up to 500	20 to	o 500	30	27	60	22	1/4	59	69	44	1	0	—) -0.1 -0.3	16	40	6.5	-	15	15	11	8
50	Up to 600	20 to	600	35	32	70	27	1/4	67	78	52	1	2	—	18.0	-0.1 -0.3	20	50	6.0	—	17	17	11	11
63	Up to 600	20 to	600	35	32	86	27	1/4	73	84	64	1	6	—	25.0		20	55	6.0	—	17	17	11	11
80	Up to 750	20 to	o 750	40	37	102	32	1/4	77	92	78	2	0	—	31.5	-0.1 -0.3	25	65	8.0	—	21	21	11	13
100	Up to 750	20 to	o 750	40	37	116	41	1/4	85	100	92	2	5	—	35.5		30	80	8.0	—	21	21	11	16
125	Up to 1000	30 to	1000	50	47	145	—	1/2	112.5	141.5	115	2	5	17		-0.1 -0.3	36	90	43	14	16	16	16	—
140	Up to 1000	30 to	1000	50	47	161		1/2	121	150	128	2	8	17	36.0) -0.1 -0.3	36	90	43	14	16	16	16	—
160	Up to 1200	30 to	1200	56	53	182	—	3/4	133	167	144	3	2	20	40.0	-0.1 -0.3	40	90	43	14	18.5	18.5	18.5	—
Bore size		K	KA				N			•			With	out rod	boot				With r	od bo	oot			
Bore size (mm)	J	к	КА	L	м	м	N	Р	RR	s	U	w	Witho H	out rod	boot ZZ	е	f	h	With r	od bo	pot	z	ZZ	
	J M8 x 1.25	к 6	KA	L 30		M x 1.5	N 27	P	RR 10	S 84	U 16	W 8	-	Z		e 36	f 16.5	h		rod bo ℓ L strol			ZZ 252	
(mm)				L 30 35	M14			-		-	-		н	Z 234	ZZ	-	f 16.5 16.0	h) 1/2	l	ke 2	42		
(mm) 40	M8 x 1.25		14		M14	x 1.5 x 1.5	27	1/4	10	84	16	8	Н 51	Z 234 261	ZZ 244	36		h 59) 1/2 3 1/2	ℓ strol	ke 2 ke 2	42 2 69 2	252	
(mm) 40 50	M8 x 1.25 M8 x 1.25		14 18	35	M14 M18 M18	x 1.5 x 1.5	27 30	1/4 3/8	10 12	84 90	16 19	8 0	H 51 58 58	Z 234 261 280	ZZ 244 273	36 45	16.0	h 59 66	$\begin{array}{c c} & & & \\ 0 & & 1/2 \\ \hline 0 & & 1/2 \\ \hline 0 & & 1/2 \\ \hline 0 & & 1/2 \\ \end{array}$	ℓ ₁ strol ₁ strol	ke 2 ke 2 ke 2	242 2 69 2 888 3	252 281	
(mm) 40 50 63	M8 x 1.25 M8 x 1.25 M10 x 1.25	6 7 7	14 18 18	35 40	M14 M18 M18 M22	x 1.5 x 1.5 x 1.5	27 30 31	1/4 3/8 3/8	10 12 16	84 90 98	16 19 23	8 0 0	H 51 58 58 71	Z 234 261 280 327	ZZ 244 273 296	36 45 45	16.0 16.0	h 59 66	$\begin{array}{c c} & & & \\ 0 & & 1/2 \\ \hline 0 & & 1/2 \\ \hline 0 & & 1/2 \\ \hline 0 & & 1/2 \\ \end{array}$	ℓ u strol u strol u strol	<pre></pre> ke 2ke 2ke 2ke 3	242 2 69 2 888 3 36 3	252 281 304	
(mm) 40 50 63 80	M8 x 1.25 M8 x 1.25 M10 x 1.25 M12 x 1.75	6 7 7 11	14 18 18 22	35 40 48	M14 M18 M18 M22 M26	x 1.5 x 1.5 x 1.5 x 1.5 x 1.5	27 30 31 37	1/4 3/8 3/8 1/2	10 12 16 20	84 90 98 116	16 19 23 28	8 0 0 0	H 51 58 58 71 72	Z 234 261 280 327 356	ZZ 244 273 296 347	36 45 45 60	16.0 16.0 18.0	h 59 66 66	$\begin{array}{c c} & 1/2 \\ & $	ℓ strol strol strol strol	<pre></pre>	242 2 69 2 888 3 365 3	252 281 304 356	
(mm) 40 50 63 80 100	M8 x 1.25 M8 x 1.25 M10 x 1.25 M12 x 1.75 M12 x 1.75	6 7 7 11 11	14 18 18 22 26	35 40 48 58	M14 M18 M18 M22 M26 M30	x 1.5 x 1.5 x 1.5 x 1.5 x 1.5 x 1.5	27 30 31 37 40	1/4 3/8 3/8 1/2 1/2	10 12 16 20 25	84 90 98 116 126	16 19 23 28 36	8 0 0 0	H 51 58 58 71 72 110	Z 234 261 280 327 356 414.5	ZZ 244 273 296 347 381	36 45 45 60 60	16.0 16.0 18.0 18.0	h 59 66 66 80 81	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ℓ strol strol strol strol strol strol	 <th>242 2 69 2 888 3 365 3 655 3 37.5 4</th><th>252 281 304 356 390</th><th></th>	242 2 69 2 888 3 365 3 655 3 37.5 4	252 281 304 356 390	

Lock-up Cylinder Double Acting, Single Rod Series CL1


Double Clevis Style (D)

ø40 to ø100

B Lock-up at piston forward B Lock-up at piston backward

ø125 to ø160

4-J	
¢ II	N.O

_
-X
20-
Data

CNS

CLS

CLQ

MLGP

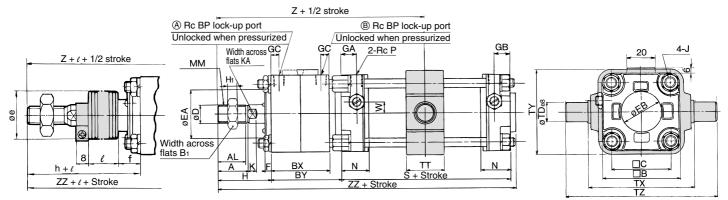
RLQ

MLU

ML1C

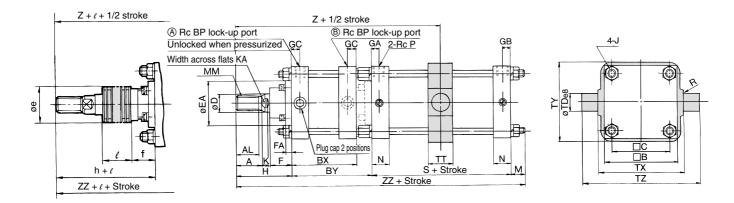
D-

Bore size	Str	oke ra	ange (mm)	•	AL	в	B1	BP	вх	ВҮ	с	СD		ст	сх	,	CZ	,	D	EA	F	FA	GA	GB
(mm)	Without	rod boot	With rod boot	Α	AL	В	D1			БТ			/ L			-	02	-	U	CA	Г	ГА	GA	GB
40	Up to	500 ס	20 to 500	30	27	60) 22	1/4	59	69	44	10	-	-	15.0		29.5	5	16	40	6.5	—	15	15
50	Up to	o 600	20 to 600	35	32	70) 27	1/4	67	78	52	12	-	-	18.0		38		20	50	6.0	—	17	17
63	Up to	o 600	20 to 600	35	32	86	6 27	1/4	73	84	64	16	-	_	25.0		49		20	55	6.0	—	17	17
80	Up to	o 750	20 to 750	40	37	102	2 32	1/4	77	92	78	20	-	_	31.5		61		25	65	8.0	—	21	21
100	Up to	o 750	20 to 750	40	37	116	6 41	1/4	85	100	92	25	-	_	35.5		64		30	80	8.0	—	21	21
125	Up to	1000	30 to 1000	50	47	145	5	1/2	112.5	5 141.	5 115	25	1	17	32.0		64 _		36	90	43	14	16	16
140	Up to	1000	30 to 1000	50	47	161	I —	1/2	121	150	128	28	1	17	36.0		72 -		36	90	43	14	16	16
160	Up to	1200	30 to 1200	56	53	182	2 —	3 _{/4}	133	167	144	32	2	20	40.0	+0.3 +0.1	80 _	0 -0.2	40	90	43	14	18.5	18.5
Bore size										_		_			Witho	out roo	d boot			Wit	h rod b	oot		
Bore size (mm)	GC	Hı	J	к	КА	L	ММ		N	PI	R	s	U	w	Witho H	out roo	boot	e	f	Wit h	h rod b l	oot	Z	ZZ
	GC	H 1 8	J M8 x 1.25	к 6	KA 14	L 30	MM M14 x ⁻	1.5		_		-	U 16	W 8	н			e 36	f 16.5					ZZ 252
(mm)			J M8 x 1.25 M8 x 1.25			L 30 35		-	27	1/4	10	84 1	-		H 51	Z	ZZ	-	f 16.5 16.0	h	e	roke	242	
(mm) 40	11	8		6	14		M14 x ⁻	1.5	27 30	1/4 3/8	10 12	84 1 90 1	16	8	H 51 58	Z 234	ZZ 244	36		h 59	<i>l</i> ¹ /4 st	roke roke	242 269	252
(mm) 40 50	11 11	8 11	M8 x 1.25	6	14 18	35	M14 x ⁻ M18 x ⁻	1.5 1.5	27 30 31	¹ / ₄ ³ / ₈ ³ / ₈	10 12 16	84 1 90 1 98 2	16 19	8	H 51 58 58	Z 234 261	ZZ 244 273	36 45	16.0	h 59 66	<i>l</i> ¹ / ₄ str ¹ / ₄ str	roke roke roke	242 269 288	252 281
(mm) 40 50 63	11 11 11	8 11 11	M8 x 1.25 M10 x 1.25	6 7 7	14 18 18	35 40	M14 x ⁻ M18 x ⁻ M18 x ⁻	1.5 1.5 1.5	27 30 31	¹ / ₄ ³ / ₈ ³ / ₈ ¹ / ₂	10 12 16 20 1	84 1 90 1 98 2 16 2	16 19 23	8 0 0	H 51 58 58 71	Z 234 261 280	ZZ 244 273 296	36 45 45	16.0 16.0	h 59 66 66	l 1/4 str 1/4 str 1/4 str	roke roke roke roke	242 269 288 336	252 281 304
(mm) 40 50 63 80	11 11 11 11 11	8 11 11 13	M8 x 1.25 M10 x 1.25 M12 x 1.75	6 7 7 11	14 18 18 22	35 40 48	M14 x ⁻ M18 x ⁻ M18 x ⁻ M22 x ⁻	1.5 1.5 1.5 1.5	27 30 31 37 40	1/4 3/8 3/8 1/2 1/2	10 12 16 20 1 25 1	84 1 90 1 98 2 16 2 26 3	16 19 23 28	8 0 0 0	H 51 58 58 71 72	Z 234 261 280 327 356	ZZ 244 273 296 347	36 45 45 60	16.0 16.0 18.0	h 59 66 66 80	<i>l</i> 1/4 str 1/4 str 1/4 str 1/4 str	roke roke roke roke roke	242 269 288 336	252 281 304 356 390
(mm) 40 50 63 80 100	11 11 11 11 11 11	8 11 11 13 16	M8 x 1.25 M10 x 1.25 M12 x 1.75 M12 x 1.75	6 7 7 11 11	14 18 18 22 26	35 40 48 58	M14 x ⁻ M18 x ⁻ M18 x ⁻ M22 x ⁻ M26 x ⁻	1.5 1.5 1.5 1.5 1.5	27 30 31 37 40 35	1/4 3/8 3/8 1/2 1/2 1/2 1/2	10 12 16 20 1 25 1 29	84 1 90 1 98 2 16 2 26 3 98 3	16 19 23 28 36	8 0 0 0 0	H 51 58 58 71 72 110	Z 234 261 280 327 356	ZZ 244 273 296 347 381	36 45 45 60 60	16.0 16.0 18.0 18.0	h 59 66 66 80 81	<i>l</i> 1/4 str 1/4 str 1/4 str 1/4 str 1/4 str	roke roke roke roke roke roke	242 269 288 336 365 437.5	252 281 304 356 390


* Clevis pin, flat washer and cotter pin are attached.

Center Trunnion Style (T)

ø40 to ø100


(A) Lock-up at piston forward (B) Lock-up at piston backward

With rod boot

ø125 to ø160

With rod boot

Bore size	Stroke range (mm)			Α	AL	в	B1	BP	вх	вү	с	D	EA	EB	B F	E/	GA	GB	GC	H1	J	к	КА	
(mm)	Without	od boot With rod boo		d boot	A	AL	P	DI	DF	DA	DI	C	U	EA		у г	"		GD	GC	- 11	J	n n	NA
40	Up to	Up to 500		500	30	27	60	22	1/4	59	69	44	16	40	32	2 6.	.5 —	- 15	15	11	8	M8 x 1.25	6	14
50	Up to 600		20 to	600	35	32	70	27	1/4	67	78	52	20	50	40) 6.	.0 —	- 17	17	11	11	M8 x 1.25	7	18
63	Up to 600		20 to	20 to 600		32	86	27	1/4	73	84	64	20	55	40) 6.	.0 —	- 17	17	11	11	M10 x 1.25	7	18
80	Up to 750		20 to) to 750 40		37	102	32	1/4	77	92	78	25	65	52	2 8.	.0 —	- 21	21	11	13	M12 x 1.75	11	22
100	Up to 750		20 to	750	40	37	116	41	1/4	85	100	92	30	80	52	2 8.	.0 —	- 21	21	11	16	M12 x 1.75	11	26
125	25 to	25 to 1000		o 1000 50		47	145	—	1/2	112.5	141.5	115	36	90		· 43	14	16	16	16	—	M14 x 1.5	15	31
140	30 to 1000		30 to	1000 50		47	161	—	1/2	121	150	128	36	90	-	43	14	16	16	16	—	M14 x 1.5	15	31
160	35 to 1200		35 to	1200	56	53	182		3 _{/4}	133	167	144	40	90		43	14	18.5	18.5	18.5	—	M16 x 1.5	17	36
Bore size		D.A			Р	R	S TDe8		тт	TV 7		T7	7 1	N	Witho	ut rod	boot	With rod boot						
(mm)	IVI	M M		IN	Р	R	3			"	ТХ	(TY	TZ	: W	v –	Н	Z	ZZ	е	f	h	l	Z	ZZ
40	—	M14	x 1.5	27	1/4	—	84		-0.033	22	85	62	2 11	7 8	3	51	162	209	36	16.5	59	1/4 stroke	170	217
50	—	M18	x 1.5	30	3/ ₈	—	90	15	-0.032 -0.059	22	95	74	12	7 (D	58	181	232	45	16.0	66	¹ / ₄ stroke	189	240
63	—	M18	x 1.5	31	³ /8	—	98	18	-0.032 -0.059	28	110	90) 14	8 (C	58	191	246	45	16.0	66	¹ / ₄ stroke	199	254
80	—	M22	x 1.5	37	1/ ₂	—	116		-0.040 -0.073	34	140	110) 19	2 (D	71	221	286	60	18.0	80	1/4 stroke	230	295
100	-	M26	x 1.5	40	1/2	-	126	25	-0.040 -0.073	40	162	130) 21	4 (D	72	235	306	60	18.0	81	¹ / ₄ stroke	244	315
125	19	M30	x 1.5	35	1/ ₂	1.0	98		-0.050 -0.089	50	170	164	23	4 –	_	110	300.5	368.5	75	40	133	¹ / ₅ stroke	323.5	391.5
140	19	M30	x 1.5	35	1/2	1.5	98	36	-0.050 -0.089	55	190	184	26	2 -	-	110	309	377	75	40	133	¹ / ₅ stroke	332	400
160	22	M36	x 1.5	39	3 _{/4}	1.5	106	40	-0.050 -0.089	60	212	204	29	2 –	-	120	340	415	75	40	141	¹ / ₅ stroke	361	436