

Compact Rotary Actuator Rack-and-Pinion Type/Sizes: 10, 15, 20, 30, 40 Series CRQ2

Piping can be installed from one end

Body can be used as a flange

Uses internal cushioning

10, 15 : Rubber bumper 20, 30, 40: Air cushion

Compact design saves mounting space

- 10: 17mm 15: 20mm
- 20: 29mm
- 30: 33mm
- 40: 37mm

2 auto switches can be mounted on same side (both sides)

Miniature auto switches do not protrude from the body when installed and require no extra space.

Easy alignment when mounting body

Body positioning pin holes

Angle adjustment

bolts are standard

Use of double piston eliminates backlash

Single and double shaft types available in all sizes

Compact Rotary Actuator Rack-and-Pinion Type

Series CRQ2

How to Order

Applicable auto switches

			tor			Load	voltage	Auto switch part no.		Lead w	ire leng	th (m)*		
Туре	Special function	Electrical	ight	Wiring	r		AC	Electrical en	try direction	0.5	3	5	Applica	ble loads
		enuy	lno	(output)			AC	Perpendicular	In-line	(Nil)	(L)	(Z)		
				3 wire	vire — 5V equiv.)	51/		A96V	A96	•		—		
g			Voc	(NPN equiv.)		50		A96VL	A96L		•	—		
swit		Crommot	res				1001/	A93V	A93	•		—		
eq		Giommer		Quuina	241		1000	A93VL	A93L	—	•	—		Relav.
Re			Na	2 wire	240	5V,	100)/ 07/000	A90V	A90	•		—		PLC
			INO			12V 100V or less	A90VL	A90L		•	_			
								F9NV	F9N	•		_		
				3 wire	24V	V 5V, 12V		F9NVL	F9NL		•	_		
				(INFIN)				F9NVZ	F9NZ			0		
			-					F9PV	F9P	•	•	_		
	—			3 wire	—			F9PVL	F9PL		• –	1		
				(111)				F9PVZ	F9PZ			0	1	
ے ا					2414	12V		F9BV	F9B	•		—	1	
vitc				2 wire				F9BVL	F9BL		•	_	1	
e s/								F9BVZ	F9BZ			0	1	Relay,
stat		Giommet	165		24V	5V,	1 —	F9NWV	F9NW	•		_	1 —	PLC
pild				3 wire				F9NWVL	F9NWL		•	_	1	
й М				(INPIN)		120		F9NWVZ	F9NWZ			0		
							1	F9PWV	F9PW	•		_		
	Diagnostic indication			3 wire	—			F9PWVL	F9PWL		•	_		
	(2 color indicator)			(FNP)				F9PWVZ	F9PWZ	_	_	0		
								F9BWV	F9BW	•	_	_		
				2 wire	24V	4V 12V		F9BWVL	F9BWL	_	•	_		
								F9BWVZ	F9BWZ	_	_	0		

*Lead wire length symbols 0.5m ... Nil (Example) F9B * Solid state auto switches marked with a \bigcirc are produced upon receipt of order.

3mL (Example) F9BL 5mZ (Example) F9BZ

Series CRQ2

Specifications

Size	10	15	20	30	40	
Fluid		Air (unlubricated)				
Maximum operating pressure	0.7N	0.7MPa 1MPa				
Minimum operating pressure	0.15	0.15MPa 0.1MPa				
Ambient and fluid temperature	0 to 60°C (with no freezing)					
Cushion	Rubber	bumper	None, Air cushion			
Angle adjustment			± 5°			
Rotation		80° te	o 100°, 170° to	190°		
Port size	M5 x 0.8 Rc1/8					
Mounting brackets	Basic type					
Output Nm*	0.3 0.75 1.8 3.1				5.3	

*) Indicates output with operating pressure at 0.5MPa. Refer to Page 14 for details.

Allowable Kinetic Energy and Rotation Time Adjustment Range

JIS symbol

		Stable operational					
Size		Allo	vabl	Cushion angle	adjustment range		
	Without cushion		n Ri	ıbber bumper	With air cushion *	Cushion angle	Rotation time (\$/90°)
10			0.25 x 10⁻³		_		0.2 to 0.7
15				0.39 x 10⁻³	_		0.2 to 0.7
20	0	.025		_	0.12	40°	0.2 to 1
30	0.048			—	0.25	40°	0.2 to 1
40	40 0.081			_	0.40	40°	0.2 to 1

*) Allowable kinetic energy with cushion Maximum energy absorption with optimal adjustment of cushion needle

Weight Table

		(g)
Size	Standar	d weight*
OIZe	90°	180°
10	120	150
15	220	270
20	600	700
30	900	1100
40	1400	1600

*) Value excluding the weight of auto switches.

POWER O AIRE **Compact Rotary Actuator Rack-and-Pinion Type**

Series CRQ2

Rotation Range

When pressure is applied to the port on the side with the arrow, the shaft rotates clockwise.

Sizes 10, 15

Using the Body as a Flange

The body's L dimensions are shown in the drawing on the right.

When JIS standard hexagon socket head cap screws are used, the actuator grooves should be used to contain the heads of the screws.

Size	L	Screw
10	13	M4
15	16	M4
20	22.5	M6
30	24.5	M8
40	28.5	M8

Series CRQ2

Construction

Standard type Sizes 10, 15

Parts list

No.	Description	Material	Note		
1	Body	Aluminum alloy	Clear hard anodized		
2	Cover	Aluminum alloy	Electroless nickel plated		
3	Plate	Aluminum alloy			
4	End cover	Aluminum alloy	Electroless nickel plated		
5	Piston	Stainless steel			
6	Shoft	Stainless steel	Sizes: 10, 15		
	Shart	Chromium molybdenum steel	Sizes: 20, 30, 40		
7	Seal retainer	Aluminum alloy	Chromated		
8	Bearing retainer	Aluminum alloy	Clear hard anodized		
9	Wear ring	Resin			
10	Hexagon socket head cap screw	Stainless steel			
11	Hexagon nut with flange	Steel wire	Electroless nickel plated		
12	Round head No. 0 Phillips screw	Steel wire	Zinc chromated		
12	Round head No. 0 Phillips screw	Stool wire	10, 15 nickel plated		
13	Round head Phillips screw	Steel wire	20, 30, 40 nickel plated		

Parts list

No.	Description	Material	Note
14	Hexagon socket head set screw	Chromium molybdenum steel	Electroless nickel plated
15	Bearing	Bearing steel	
16	Parallel key	Carbon steel	20, 30, 40
17	Steel balls	Stainless steel	20, 30, 40
18	C S type snap ring	Stainless steel	
19	Seal		
20	Gasket	-	
21	Piston seal	NBR	
22	Cushion seal		20, 30, 40 with cushion
23	Seal washer		
24	Magnet	Magnetic material	With auto switch
25	Cushion valve assembly		20, 30, 40 with cushion
26	Cushion pad	Elastic material	10, 15

Replacement parts

Description			Kit number			Contonto	
Description	10	15	20	30	40	Contents	
Seal kit	P473010-1	P473020-1	P473030-1	P473040-1	P473050-1	19, 20, 21, 23	

Compact Rotary Actuator Rack-and-Pinion Type

Series CRQ2

With auto switch **Sizes 10, 15**

With cushion Sizes 20, 30, 40

With auto switch and cushion Sizes 20, 30, 40

Series CRQ2

Dimensions

* Dimension AU does not indicate the dimension when shipped because of the adjustment section.

S: Upper space 90°, Lower space 180°

Compact Rotary Actuator Rack-and-Pinion Type

* Dimension AU does not indicate the dimension when shipped because of the adjustment section.

S: Upper space 90°, Lower space 180°

Series CRQ2 **Auto Switch Specifications**

Reed Switches

Auto switch part no.	Load voltage	Maximum load current or load current range	Internal voltage drop	Indicator light (lights when ON)	Applications
D-A90	DC 24V or less	50mA			Relay,
	DC 48V or less	40mA	0	None	PLC,
	^{AC} _{DC} 100V or less	20mA			IC circuit
D-A93	24VDC	5 to 40mA	2 6 V or loss		Relay,
D-A93V	100VAC	5 to 20mA	2.00 01 less	•	PLC
D-A96 D-A96V	4 to 8VDC	20mA	0.8V or less	•	IC circuit

• Lead wires - D-A90, A93 : Oil resistant heavy duty vinyl cord ø2.7

0.18mm² x 2 wire (Brown, Blue [Red, Black]) 0.5m

D-A96⊟ (I resistant heavy duty vinyl cord o2.7 0.15mm²x 3 wire (Brown, Black, Blue [Red, White, Black]) 0.5m

 Insulation resistance – $-50M\Omega$ or more at 500VDC (between lead wire and case)

Withstand voltage — 1000VAC for 1 min. (between lead wire and case) • Operation time —1.2ms
Ambient temperature — 10 to 60°C • Impact resistance — 300m/s² {30.6G} • Leakage current —
• Enclosure — IEC529 standard IP67 (JIS0920) watertight -0

• For a lead wire length of 3m, "L" is added to the end of the part number. Example) D-A90L

Solid State Switches

Auto switch part no.	Output type	Power supply voltage	Current con- sumption	Load voltage	Max. load current or load current range	Internal voltage drop	Leakage current	Indicator light	Applications	
D-F9N D-F9NV	NPN		8mA or less	28VDC		0.4V		Lights when ON		
D-F9NW D-F9NWV	type	24VDC	12mA or less	or less	50mA	or less	10μA or less	2 color indicator	Relay,	
D-F9P D-F9PV	PNP	28VDC)	10mA	_	or less	1.5V	at 24VDC	Lights when ON	PLC	
D-F9PW D-F9PWV	type		or less			or less		2 color indicator		
D-F9B D-F9BV				24VDC (10 to	5 to	4.5V or less	1mA or less	Lights when ON	24VDC	
D-F9BW D-F9BWV				28VDC)	30mA	5V or less	at 24VDC	2 color indicator	PLC	

Oil resistant heavy duty vinyl cord ø2.7, 0.15mm² x 3 wire (Brown, Black, Blue [Red, White, Black) 0.5m, Lead wires 0.18mm² x 2wire (Brown, Blue [Red, Black]) 0.5m

 Insulation resistance – - 50M Ω or more at 500VDC (between lead wire and case)

 Withstand voltage — 1000VAC for 1 min. (between lead wire and case)
 Ambient temperature — 10 to 60°C
 Operation time — 1 ms or les - 1ms or less

Impact resistance — 1000m/s² {102G}
 Enclosure — IEC529 standard IP65 (JIS0920) splash proof

• For a lead wire length of 3m, "L" is added to the end of the part number. Example) D-F90NL

POWER O AIRE Compact Rotary Actuator Rack-and-Pinion Type

Series CRQ2

Auto Switch Internal Circuits

Lead wire colors inside [] are those prior to conformity with IEC standards.

D-A90 (V)

,			
d switch	-o	Contact protection box	⊷ OUT (±) Brown [Red] ∼
	•	CD-P11 CD-P12	o OUT (∓) Blue [Black]

D-A93 (V)

D-A96 (V)

Solid state switches

D-F9P (V)

D-F9B (V)

Main switch

Sircuit

-• OUT (+) Brown [Red]

OUT (−) Blue [Black]

D-F9PW (V)

D-F9BW (V)

Indicator light/Display method

Proper Auto Switch Mounting Positions

0	Rotation	Reed switches					Solid state switches			
Size	angle	Α	В	Operation range	Switch actuation range	Α	В	Operation range 0m	Switch actuation range	
10	90°	6.5	13	62°	12°	10.5	17	75 [°]	°	
	180°	9.5	22.5	03	12	13.5	26.5		5	
15	90°	9.5	18	₅2°	9°	13.5	22	69 [°]	°	
	180°	13.5	30.5	52		17.5	34.5		3	
20	90°	22	34.5	11°	9°	26	38.5	56°	۸°	
20	180°	28	53.5	41		32	57.5		4	
20	90°	29	45	າາ°	7 °	33	49	12°	°	
30	180°	37	68	32	1	41	72	43	3	
40	90°	34	53	24°	Б°	38	57	- 36 [°]	۸°	
	180°	43.5	81.5	24	5	47.5	85.5		4	

Operation range θ m: The value of the auto switch operating range Lm converted to the shaft rotation angle

Switch actuation range: The value of the auto switch hysteresis converted to an angle

Series CRQ2 **Auto Switch Connections and Examples**

Basic Wiring

AND connection for NPN output

Black [White] Load

[Red] [White]

The indicator lights will light up when both switches are turned ON.

(performed with switches only)

Brown [Red]

Blue

[Black]

Blue

[Black]

Switch 1

Switch 2

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications

Connection Examples for AND (Series) and OR (Parallel)

2 wire with 2 switch AND connection

OR connection for NPN output

(Reed switch)

(Solid state)

When two switches

the load voltage will

Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of switches in the ON state, the indicator lights may sometimes get dark or not light up, because of dispersion and reduction of the current flowing to the switches.

Series CRQ2 Model Selection

Series CRQ2 Technical Information

Refer to pages 14 through 18 for detailed technical information other than series CRQ2 model selection procedures. [Data 1] Effective torque [Data 2] Moment of Inertia [Data 3] Air consumption

Step

Select the actuator torque.

1. Find the required turning torque for the intended objective.

Work objective	Type of load	Required torque formula N-n						
Static operation	Static load	Ts						
Dynamic*1	Resistance load	(3 to 5) · Tf						
operation	Inertial load*2	S · Ta or more						

- *1. In the case of dynamic operation, there may be a combination of resistance and
- inertial loads

*2. Since it is also necessary to examine inertial load in selection step [2] in calculating the kinetic energy of the work piece make the selections together.

the kinetic energy of the work piece, make the selections together. *3. Refer to load types below for details regarding the terms Ts, Tf, S and Ta in the table.

2. Determine the operating pressure

3. Determine the proper size from the effective torque table.

ORDER ONLINE

Step

Consider the impact at the end of the rotation.

- When an external stopper (shock absorber) is provided to absorb the impact, be sure to use one which has sufficient absorption capacity.
- 2. When relying on the actuator's internal cushion without using a stopper, the model selection graphs consider the absorption capacity of the actuator's internal cushion, making it possible to select a model from the rotation time within the speed adjustment range and the moment of inertia of the work piece.
 - Rubber bumper ... Kinetic energy is absorbed by placing an elastic body (rubber) at the end of the rotation.
 Air cushion The exhaust air is compressed shortly before the end of the rotation, and the load's kinetic energy is

absorbed by its repulsive force.

Without cushion

Step

With cushion

Consider the allowable shaft load.

A load can be applied in the axial direction up to the values shown in the table below provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible.

Rack-and-pinion type (double rack)

Unit: N

Sizo	Load direction								
Size	Fsa	Fsb	Fr						
10	15.7	7.8	14.7						
15	19.6	9.8	19.6						
20	49	29.4	49						
30	98	49	78						
40	108	59	98						

A load up to the allowable radial/thrust load can be applied provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible. In order to further improve the operating conditions, a method such as that shown in the drawing below is recommended so that a direct load is not applied to the shaft.

Step

Find the air consumption of the actuator.

Find the air consumption necessary to calculate the running cost of the air supply. Refer to air consumption on page 18.

Rotary Actuator Technical Data 1 and 2 Effective Torque/Moment of Inertia

Effective Torque

Effective torque values are typical values and are not guaranteed.

Use them as guide values in actual applications.

										Un	it: N⋅m		
0.	Operating pressure (MPa)												
Size	0.10	0.15	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00		
10	—	0.09	0.12	0.18	0.24	0.30	0.36	0.42	—	-	—		
15	—	0.22	0.30	0.45	0.60	0.75	0.90	1.04	—	—	—		
20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66		
30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24		
40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6		

Moment of Inertia

When an object (load) is moved by the actuator, inertial force (kinetic energy) is created in the object. Conversely, in order to stop the moving object, it is necessary to absorb the object's kinetic energy with a stopper or shock absorber, etc. When the load moves in a straight line (air cylinder) or turns (rotary actuator), the kinetic energies can be calculated with the formulas shown in Figures 1 and 2 respectively.

In the case of linear motion, if the speed "V" from Formula (1) is constant, the kinetic energy "E" is readily determined by the mass "m". However, in the case of turning motion it is clear from Formula (2) that the kinetic energy "E" varies in proportion to the square of the turning radius "r", even if the angular speed " ω " and mass "m" are constant. Thus, even if the mass is small, when "r" is large the resulting moment of inertia ($I = m \cdot r^2$) is large, and since the kinetic energy "E" also becomes large, this may lead to damage of the shaft, etc. When a load is moved in this way by a rotary actuator, it is particularly necessary to exercise caution regarding the moment of inertia (= $m \cdot r^2$) of the load.

The moment of inertia indicates the difficulty of turning an object, or conversely, the difficulty of stopping an object which is turning. Since there is a limit to the kinetic energy allowed in a rotary actuator, the limit value of the rotation time can be found by finding the moment of inertia. How to find the moment of inertia is explained below.

The basic formula for moment of inertia is shown below.

This indicates the moment of inertia with respect to the rotation axis of a mass "m" which is a distance "r" from the rotational axis. The formula for finding the moment of inertia differs depending on the shape of the object. A reference table of formulas for calculating the moment of inertia is shown on page 15.

Concrete examples of how to calculate the moment of inertia are shown on the following pages.

Moment of Inertia Formula Table (Calculation of Moment of Inertia) I: Moment of Inertia kg m² m: Load mass kg

A182

1. Thin shaft

Position of rotational axis: Perpendicular to the shaft through one end

2. Thin shaft

Position of rotational axis: Through the shaft's center of gravity

parallelopiped) Position of rotational axis: Through the

$$I = m \cdot \frac{a^2}{12}$$

Position of rotational axis: Central axis

6. Column (including thin round plate)

$$I = m \cdot \frac{r^2}{2}$$

7. Solid sphere

 $I = m \cdot \frac{2r^2}{5}$

8. Thin round plate

Position of rotational axis: Diameter

 $I = m \cdot \frac{r^2}{4}$

9. Load at end of lever

$$\begin{split} I &= m_1 \cdot \frac{{a_1}^2}{3} \ + \ m_2 \cdot a_2^2 + K \\ (Example) \ When \ shape \ of \ m_2 \ is \ a \end{split}$$
sphere refer to 7 and K = $m_2 \cdot \frac{2r^2}{5}$

10. Gear transmission

Number of teeth = a

- 1. Find the moment of inertia $I_{\mbox{\scriptsize B}}$ for the rotation of shaft (B).
- 2.Next, I_B is entered to find I_A the moment of inertia for the rotation of shaft (A) as

```
I_A = \left(\frac{a}{b}\right)^2 \cdot I_B
```


 $I = m \cdot \frac{a}{12}$

4. Thin rectangular plate (rectangular parallelopiped) Position of rotational axis: Perpendicular to

the shaft through one end (also the same in case of a thicker plate)

5. Thin rectangular plate (rectangular

parallelopiped) Position of rotational axis: Through the center of gravity and perpendicular to the plate (also the same in case of a thicker plate)

Technical Data/Moment of Inertia

WER

ORDER ONLINE

NER

Rotary Actuator Technical Data 3 Air Consumption

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.

* The air consumption (QcR) required for one reciprocation of the rotary actuator alone is shown in the table below, and can be used to simplify the calculation.

Formulas

QcR: Since the internal volume is different when the A/B ports are pressurized in vane type sizes 10, 15, 20 and 30, use formula (1). Use formula (2) for vane type sizes 50, 80, 100 and the rack-and-pinion type.
$\int Q_{CR} = V x \left(\frac{P + 0.1013}{0.1013} \right) x \ 10^{-3} \dots$ Formula (1)
$\int Q_{CR} = 2V x \left(\frac{P + 0.1013}{0.1013}\right) x 10^{-3}$ Formula (2)
$Q_{CP} = 2 x a x / x \frac{P}{0.1013} x 10^{-6}$ (3)
$Q_{C} = Q_{CR} + Q_{CP}$ (4)

Qc	R = Air consumption of rotary actuator	[/ (ANR)]
Qc	P = Air consumption of tubing or piping	[/ (ANR)]
V	= Internal volume of rotary actuator	[cm ³]
Ρ	= Operating pressure	[MPa]
/	= Length of piping	[mm]
а	= Internal cross section of piping	[mm ²]

Qc = Air consumption required for one reciprocation of rotary actuator [/(ANR)]

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of pneumatic actuators downstream. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

Formula

Qc2 = Qc x n x Number of actuators x Reserve factor

Qc₂ = Compressor discharge flow rate

n = Actuator reciprocations per minute

Internal cross section of tubing and steel piping

Nominal size	O.D. (mm)	I.D. (mm)	Internal cross section a (mm ²)			
T 0425	4	2.5	4.9			
T🗆 0604	6	4	12.6			
TU 0805	8	5	19.6			
T 0806	8	6	28.3			
1/8B	—	6.5	33.2			
T🗆 1075	10	7.5	44.2			
TU 1208	12	8	50.3			
T🗆 1209	12	9	63.6			
1/4B	—	9.2	66.5			
TS 1612	16	12	113			
3/8B	—	12.7	127			
T🗆 1613	16	13	133			
1/2B	_	16.1	204			
3/4B	_	21.6	366			
1B	_	27.6	598			

Rack-and-pinion type: Series CRQ2

K

Air consumption of rotary actuator: QCR /(ANR)

Sizo	Rotation angle (°)	Internal volume	Operating pressure (MPa)										
Size		V (cm ³)	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	90	1.2	—	0.0060	0.0071	0.0095	0.0119	0.0142	0.0166	0.0190	—	—	—
10	180	2.2	_	0.0109	0.0131	0.0174	0.0218	0.0261	0.0305	0.0348	—	—	—
15	90	2.9	_	0.0144	0.0173	0.0230	0.0287	0.0344	0.0402	0.0459	—	—	—
15	180	5.5	_	0.0273	0.0327	0.0436	0.0544	0.0653	0.0762	0.0870	—	—	—
20	90	7.8	0.0310	0.0387	0.0464	0.0618	0.0772	0.0926	0.108	0.123	0.139	0.154	0.170
20	180	13.4	0.0533	0.0665	0.0797	0.106	0.133	0.159	0.186	0.212	0.233	0.265	0.291
20	90	11.8	0.0469	0.0585	0.0702	0.0935	0.117	0.140	0.163	0.187	0.210	0.233	0.257
30	180	22.7	0.0902	0.113	0.135	0.180	0.225	0.269	0.314	0.359	0.404	0.449	0.494
40	90	20	0.0795	0.099	0.119	0.158	0.198	0.237	0.277	0.316	0.356	0.395	0.435
+0	180	38.5	0.153	0.191	0.229	0.305	0.381	0.457	0.533	0.609	0.685	0.761	0.837

