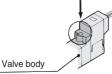

Valve Mounted Cylinder Series CV/NVGQ ø10, ø12, ø16, ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

Series CV Valve Mounted Cylinder **Precautions**

Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions on the products mentioned in this catalog, and refer to main text for more detailed precautions on every series.

Applicable Series: CVJ5, CVJ3


Manual Operation

A Warning

 Manual overrides are provided on two locations, one on the pilot valve, and the other on the valve body. Operate either one to effect manual operation.

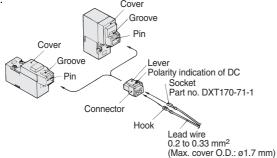
Non-locking push type

Push in the direction the arrow indicates.

Locking slotted type

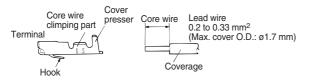
Press it to enable manual operation and turn it in the direction of the arrow to lock it. If this is not turned, it can be used in the same way as the non-locking type.

IN Simply turn in By the direction of the arrow.


Since the devices in connection are operated by manual override, make sure that there is no danger.

Plug Connector

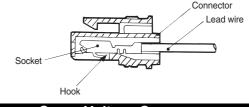
▲ Caution


1. Connector installation and removal

- To install the connector, squeeze the lever and the connector body with your fingers, slide the connector straight over the pin, and lock it in place by pushing the tab of the lever into the groove in the cover.
- To remove the connector, press the lever with your thumb to disengage the tab from the groove, and pull the connector straight out.
 Cover

2. Crimping the lead wire into the socket

 Peel approximately 3.2 to 3.7 mm of insulation from the tip of the lead wire, make sure that the ends of the core wire are even, insert the wire into the socket, and crimp it with a crimping tool. At this time, make sure that the insulation of the lead wire does not enter the area in which the core wire is crimped. (Please contact SMC for details on the special crimping tool.)


3. Installation and removal of the sockets containing lead wires

 Installation: Insert the sockets into the so

Insert the sockets into the square holes of the connector (marked + and -, respectively), pinch the lead wires to push them in entirely, allowing the hook on each socket to engage with the seat of the connector, thus locking the socket in place. (Because the hook is open, it locks automatically when the socket is pushed in.) Then, lightly pull on the lead wires to verify that the sockets have been properly locked.

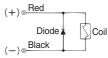
Removal:

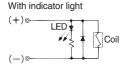
To pull the sockets out of the connector, use a rod with a small tip (approximately 1 mm) to press the hook of the socket and pull the lead wire out. To reuse the socket, expand the hook outward.

Surge Voltage Suppressor

▲ Caution

For DC:


Connect the wires by matching their polarities to the + and – marks. Be very careful to not interchange the polarities as this could cause the diodes or the switching elements to burn.


If the lead wires are connected beforehand, the red wire is +, and the black wire is -.

For AC:

A rectifier assembly is used for preventing the generation of surge voltage.

Leakage Voltage

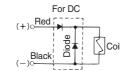
▲ Caution

⁄>sm

Be aware that there is an increase in the leakage voltage particularly if a C-R element (surge voltage protector) is used for protecting the switching element, because the leakage current flows through the C-R element.

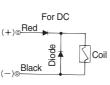
The residual leakage voltage must be kept as follows: With a DC coil, 3% of the rated voltage or below With an AC coil, 8% of the rated voltage or below.

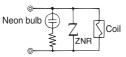
10-15-2

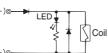

Applicable series: CVM5, CVM3, MVGQ

Light/Surge Voltage Suppressor

A Warning

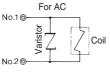

Grommet

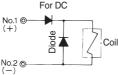

L/M plug connector



With indicator light (For AC)

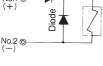

With indicator light (For DC)

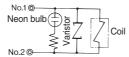


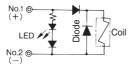


In the case of DC wiring, connect the wires by matching their polarities to the + and - marks. If the lead wires are connected beforehand, the red wire is +, and the black wire is -

DIN terminal

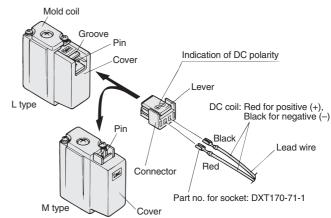





For AC

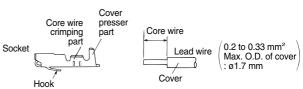
With indicator light (For AC)

With indicator light (For DC)


In the case of DC wiring, connect terminal no. 1 of the connector to the positive + side, and terminal no. 2 to the negative - side. (Refer to the marks on the terminal board.)

Plug Connector

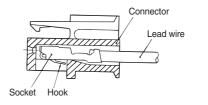
🗥 Warning

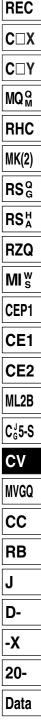

1. Connector installation and removal

- · To install the connector, squeeze the lever and the connector body with your fingers, slide the connector straight over the pin, and lock it in place by pushing the tab of the lever into the groove in the cover.
- To remove the connector, press the lever with your thumb to disengage the tab from the groove, and pull the connector straight out.

2. Crimping the lead wire into the socket

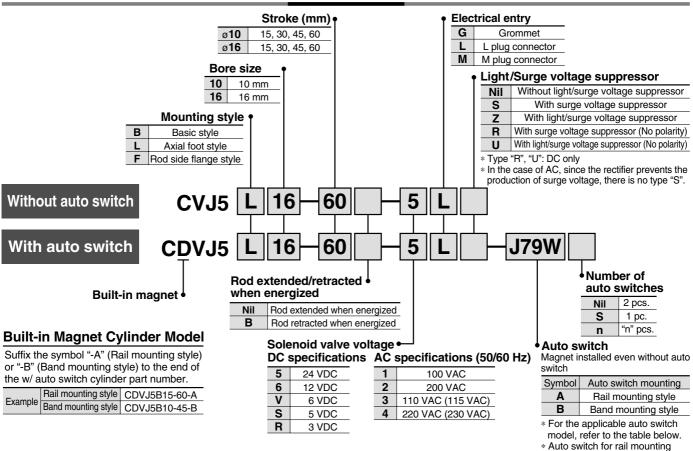
 Peel approximately 3.2 to 3.7 mm of insulation from the tip of the lead wire, make sure that the ends of the core wire are even, insert the wire into the socket, and crimp it with a crimping tool. At this time, make sure that the insulation of the lead wire does not enter the area in which the core wire is crimped. Use a special crimping tool. (Crimping tool: model no. DX170-75-1)




3. Installation and removal of the sockets containing lead wires Installation:

Insert the sockets into the square holes of the connector (marked + and -, respectively), then pinch the lead wires to push them in entirely, allowing the hook on each socket to engage with the seat of the connector, thus locking the socket in place. (Because the hook is open, it locks automatically when the socket is pushed in.) Then, lightly pull on the lead wires to verily that the sockets have been properly locked.

Removal:


To pull the sockets out of the connector, use a rod with a small end (approximately 1 mm) to press the hook of the socket and pull the lead wire out. To reuse the socket, expand the hook outward.

REA

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

		El a stria a l	Indicator light		Lo	oad volta	age	Autos	switch model		Lead v	vire le	ength	(m)*							
Туре	Special function	Electrical entry	ator	Wiring (Output)	П	с	AC	Band	Rail mou	Inting	0.5	3		None	Pre-wire connector	Applica	ble load				
		enuy	Indic	(Output)	U	C	AC	mounting	Perpendicular	In-line	(Nil)	(L)	(Z)	(N)	CONNECTOR						
switch		Crommet		3-wire (NPN equivalent)	_	5 V	_	C76	_	A76H	•	•	—	-	_	IC circuit	_				
swi	—	Grommet	Yes			-	200 V	—	A72	A72H	۲		-	-	_						
s pe			×	2-wire		12 V	100 V	C73	A73	A73H		۲	٠	—	—		Relay,				
Reed	cor	connector		2-wire	24 V	12 V		C73C	A73C	—	۲		•		_] —	PLC				
_	Diagnostic indication (2-color indication)	Grommet				-	_	—	A79W	—		۲	—	—	—						
	_	Grommet						3-wire (NPN)		5 V 40 V	H7A1	H7A1	F7NV	F79	•	٠	0	—	0	IC circuit	1
ъ			:	3-wire (PNP)		5 V, 12 V		H7A2	F7PV	F7P	۲		0	—	0	IC circuit					
switch						10.1	H7B	F7BV	J79	۲		0	-	0							
tes		connector	es	2-wire	04.14	12 V		H7C	J79C	_	۲				0] —	Relay,				
state	Discussion indication	nostic indication 3-wire (NPN) 5 V, 12 V H7NW F7N		⊁∣	3-wire (NPN)			_	H7NW	F7NWV	F79W	•	٠	0	—	0	10	PLC			
Solid	(2-color indication)		_	F7PW	۲		0	-	0	IC circuit											
	()	Grommet		2-wire		12 V		H7BW	F7BWV	J79W	•	٠	0	—	0]				
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		H7NF	_	F79F	۲		0	-	0	IC circuit]				
* Leac	Lead wire length symbols: 0.5 m ·······Nil (Example) C73C * Solid state switches marked with "〇" are produced upon receipt of order. 3 m ······· L (Example) C73CL 5 m ······· Z (Example) C73CZ																				

None ······· N (Example) C73CZ

• Since there are other applicable auto switches than listed, refer to page 10-15-6 for details.

• For details about auto switches with pre-wire connector, refer to page 10-20-66.

style is shipped together (but not

assembled).

Operation type can be changed to rod extended when energized or rod retracted when energized.

An auto switch cylinder with the switch installed can also be manufactured.

JIS Symbol Double acting, Single rod

Made to Order	Made to Order Specifications (For details, refer to page 10-21-1.)
Symbol	Specifications
-XA🗆	Change of rod end shape

Specifications

Tuid Air Proof pressure 1.05 MPa Aaximum operating pressure 0.7 MPa Ainimum operating pressure 0.15 MPa Ambient and fluid temperature -10 to 50°C (No freezing) Cushion Rubber bumper Subication Not required (Non-lube) Thread tolerance JIS Class 2 Stroke length tolerance +1.0 Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Aounting Basic style, Axial foot style, Rod side flange style Piston speed e10: 50 to 750 mm/s, ø16: 50 to 150 mm/s Illowable Kinetic Energy (Double acting, Single rod			
Proof pressure 1.05 MPa Maximum operating pressure 0.7 MPa Minimum operating pressure 0.15 MPa Ambient and fluid temperature -10 to 50°C (No freezing) Cushion Rubber bumper Lubrication Not required (Non-lube) Thread tolerance JIS Class 2 Stroke length tolerance -10.0 Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed #10° to 150 mm/s, #16° 50 to 150 mm/s Ilowable Kinetic Energy 0.035 0.090 Olenoid Valve Specifications Grommet (G)/(H), L plug connector (L), M plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Ac 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 1.0) Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.2) 200 V 1.8 (With indicator light: 2.0) 220 V	Гуре			N	on-lube	
Maximum operating pressure 0.7 MPa Minimum operating pressure 0.15 MPa Ambient and fluid temperature -10 to 50°C (No freezing) Cushion Rubber bumper Lubrication Not required (Non-lube) Thread tolerance JIS Class 2 Stroke length tolerance + 1.0 Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed e10: 50 to 750 mm/s, e16: 50 to 150 mm/s Ilowable Kinetic Energy 0.035 0.090 Olenoid Valve Specifications SYJ3190 Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage 20 V 1.8 (With indicator light: 1.0) Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.2)] Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.1)	Fluid				Air	
Minimum operating pressure 0.15 MPa Ambient and fluid temperature -10 to 50°C (No freezing) Cushion Rubber bumper Lubrication Not required (Non-lube) Thread tolerance JIS Class 2 Stroke length tolerance $\pm 1.0^{\circ}$ Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed σ 10: 50 to 750 mm/s, σ 16: 50 to 150 mm/s Ilowable Kinetic Energy 0.035 0.090 Olenoid Valve Specifications Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Act 50/60 Hz 100, 110, 200, 220 Allowable voltage $\pm 10^{\circ}$ of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 1.0) Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.9) 220 V 1.9 (With indicator light: 2.0) 220 V 1.9 (With indicator light: 2.3)] 10.2 (With indicato	Proof pressure			1.0	05 MPa	
Ambient and fluid temperature -10 to 50°C (No freezing) Cushion Rubber bumper Lubrication Not required (Non-lube) Thread tolerance JIS Class 2 Stroke length tolerance $^+$ 1.0 Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed 010: 50 to 750 mm/s, ø16: 50 to 150 mm/s Ilowable Kinetic Energy 0.035 0.090 Olenoid Valve Specifications Applicable solenoid valve model SYJ3190 Electrical entry Grommet (G)/(H), L plug connector (L), M plug connector (L), M plug connector (M) Not reated voltage Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Act 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 1.0) Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 2.0) [23 V] [2.2 (With indicator light: 2.3)]	Maximum operating pressure			0.	7 MPa	
Cushion Rubber bumper Lubrication Not required (Non-lube) Thread tolerance JIS Class 2 Stroke length tolerance + 1.0 0 Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed \$010: 50 to 750 mm/s, \$016: 50 to 150 mm/s Illowable Kinetic Energy 0.035 0.090 Olenoid Valve Specifications SYJ3190 Applicable solenoid valve model SYJ3190 Electrical entry Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Act 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Applarent power (VA) Act 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 2.0)<	Ainimum operating pressu	ure		0.	15 MPa	
Lubrication Not required (Non-lube) Thread tolerance JIS Class 2 Stroke length tolerance +1.0 c Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed ø10: 50 to 750 mm/s, ø16: 50 to 150 mm/s Illowable Kinetic Energy 0.035 0.090 Olenoid Valve Specifications Applicable solenoid valve model SYJ3190 Electrical entry Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Act 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) ACt 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.2) 200 V 1.8 (With indicator light: 1.2) 200 V 1.8 (With indicator light: 2.0) 220 V 1.9 (With indicator light: 2.3) </td <td>Ambient and fluid tempera</td> <td></td> <td>–10 to 50°</td> <td>C (No freezing)</td>	Ambient and fluid tempera		–10 to 50°	C (No freezing)		
Thread tolerance JIS Class 2 Stroke length tolerance +1.0 o Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed \$010: 50 to 750 mm/s, \$016: 50 to 150 mm/s Ilowable Kinetic Energy \$0.035 0.090 Olenoid Valve Specifications Applicable solenoid valve model SYJ3190 Electrical entry Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Allowable voltage ±10% of the rated voltage 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage 100 V 0.9 (With indicator light: 0.55) Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.2)] Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.2)] 220 V 1.9 (With indicator light: 2.3)] 220 V	Cushion			Rubb	er bumper	
Stroke length tolerance + 1.0 o Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed \$\$\mathcal{o}10\$; 50 to 750 mm/s, \$\$\mathcal{o}16\$; 50 to 150 mm/s Illowable Kinetic Energy Bore size (mm) 10 16 Allowable kinetic energy 0.035 0.090 Olenoid Valve Specifications Applicable solenoid valve model SYJ3190 Electrical entry Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 0.5 (With indicator light: 0.55) Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 1.0) Apparent power (VA) Arc Apparent power (VA) Arc 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.2)] 200 V 1.8 (ubrication			Not requi	red (Non-lube)	
Stroke length tolerance o Applicable bore size (mm) 10, 16 Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed Ø10: 50 to 750 mm/s, Ø16: 50 to 150 mm/s Piston speed Ø10: 50 to 750 mm/s, Ø16: 50 to 150 mm/s Illowable Kinetic Energy Bore size (mm) 10 Allowable kinetic energy 0.035 Olenoid Valve Specifications SYJ3190 Electrical entry Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Applicable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.2)] 220 V 1.9 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 2.0) 220 V 1.9 (With indicator light: 2.0)	Thread tolerance			JIS		
Effective area of valve (Cv factor) 1.8 mm² (0.1) Port size M5 x 0.8 Mounting Basic style, Axial foot style, Rod side flange style Piston speed ø10: 50 to 750 mm/s, ø16: 50 to 150 mm/s Illowable Kinetic Energy Bore size (mm) 10 Allowable kinetic energy 0.035 Olenoid Valve Specifications Applicable solenoid valve model SY J3190 Electrical entry Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 Act 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 1.0) Apparent power (VA) ACt 100 V 0.9 (With indicator light: 1.1) Apparent power (VA) ACt 220 V 1.8 (With indicator light: 1.2)] 220 V 1.9 (With indicator light: 2.0) 1230 V] 12.2 (With indicator light: 2.3)]	Stroke length tolerance					
Port sizeM5 x 0.8MountingBasic style, Axial foot style, Rod side flange stylePiston speed σ 10: 50 to 750 mm/s, σ 16: 50 to 150 mm/sIlowable Kinetic Energy σ 10: 50 to 750 mm/s, σ 16: 50 to 150 mm/sIlowable kinetic energy0.035Olenoid Valve SpecificationsApplicable solenoid valve modelSYJ3190Electrical entryGrommet (G)/(H), L plug connector (L), M plug connector (M)Coil rated voltage (V)DC24, 12, 6, 5, 3Allowable voltage \pm 10% of the rated voltagePower consumption (W) (2)DCApparent power (VA)ACAc100 V0.9 (With indicator light: 1.0)110 V1.0 (With indicator light: 1.1)(115 V)(1.1 (With indicator light: 1.2))200 V1.8 (With indicator light: 1.9)220 V1.9 (With indicator light: 2.0)(230 V)(2.2 (With indicator light: 2.3))	Applicable bore size (mm)			-	10, 16	
MountingBasic style, Axial foot style, Rod side flange stylePiston speed σ 10: 50 to 750 mm/s, σ 16: 50 to 150 mm/sIlowable Kinetic Energy(()Bore size (mm)10Allowable kinetic energy0.035Olenoid Valve SpecificationsApplicable solenoid valve modelSYJ3190Electrical entryGrommet (G)/(H), L plug connector (L), M plug connector (M)Coil rated voltage (V) ⁽¹⁾ DCAc 50/60 Hz100, 110, 200, 220Allowable voltage $\pm 10\%$ of the rated voltagePower consumption (W) ⁽²⁾ DCAc 50/60 Hz100 VOle 0.5 (With indicator light: 1.0)Apparent power (VA)AcAc 20 V1.8 (With indicator light: 1.9)220 V1.9 (With indicator light: 2.0)220 V1.9 (With indicator light: 2.3)]	Effective area of valve (Cv	factor)		1.8 ו	mm² (0.1)	
Piston speed	^o ort size			Μ	5 x 0.8	
Ilowable Kinetic EnergyBore size (mm)1016Allowable kinetic energy 0.035 0.090 olenoid Valve SpecificationsApplicable solenoid valve modelSYJ3190Grommet (G)/(H), L plug connector (L), M plug connector (M)Coil rated voltage (V)DC24, 12, 6, 5, 3Allowable voltage±10% of the rated voltagePower consumption (W) (2)DC0.5 (With indicator light: 1.0)Apparent power (VA) AC $100 \vee$ 0.9 (With indicator light: 1.0) $Apparent power (VA)$ AC $100 \vee$ 0.9 (With indicator light: 1.2)] $220 \vee$ 1.8 (With indicator light: 1.9) $220 \vee$ 1.9 (With indicator light: 2.0) $[230 \vee]$ $[2.2$ (With indicator light: 2.3)]	Nounting		Basic	style, Axial foot	style, Rod side flange style	
Bore size (mm) 10 16 Allowable kinetic energy 0.035 0.090 olenoid Valve Specifications SYJ3190 Applicable solenoid valve model SYJ3190 Electrical entry Grommet (G)/(H), L plug connector (L), M plug connector (M) Coil rated voltage (V) ⁽¹⁾ DC 24, 12, 6, 5, 3 AC 50/60 Hz 100, 110, 200, 220 Allowable voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.0) Apparent power (VA) AC 200 V 1.8 (With indicator light: 1.2)] 220 V 1.9 (With indicator light: 2.0) 220 V 1.9 (With indicator light: 2.3)]	Piston speed		ø1	ø10: 50 to 750 mm/s, ø16: 50 to 150 mm/s		
Definition of the solution of the			-	0		
Grommet (G)/(H), L plug connector (L), M plug connector (M)Coil rated voltage (V) DC 24, 12, 6, 5, 3AC 50/60 Hz100, 110, 200, 220Allowable voltage $\pm 10\%$ of the rated voltagePower consumption (W) (2)DC0.5 (With indicator light: 0.55)Apparent power (VA)AC $100 \vee$ 0.9 (With indicator light: 1.0)Apparent power (VA)AC $100 \vee$ 1.0 (With indicator light: 1.2)]Quo V1.8 (With indicator light: 1.9)220 \vee 1.9 (With indicator light: 2.0)[230 \vee][220 \vee 1.9 (With indicator light: 2.3)]	Bore size (mm)		1	-	16	
Electrical entry M plug connector (M) Coil rated voltage (V) DC 24, 12, 6, 5, 3 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.1) [115 V] [1.1 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.9) 220 V 1.9 (With indicator light: 2.0) [230 V] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy olenoid Valve Spe	ecifica	1 0.0	-	16 0.090	
Coil rated voltage (V) AC 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) Intervention (V) ⁽²⁾ DC AC 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) AC 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.1) [1.1 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.9) 220 V 220 V 1.9 (With indicator light: 2.0) [2.30 V] [230 V] [2.2 (With indicator light: 2.3)] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy Olenoid Valve Spe Applicable solenoid valve	ecifica	1 0.0	335	16 0.090 SYJ3190	
AC 50/60 Hz 100, 110, 200, 220 Allowable voltage ±10% of the rated voltage Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) 100 V 0.9 (With indicator light: 1.0) 110 V 1.0 (With indicator light: 1.1) [115 V] [1.1 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.9) 220 V 1.9 (With indicator light: 2.0) [230 V] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy Olenoid Valve Spe Applicable solenoid valve	ecifica	1 0.0	Grommet (16 0.090 SYJ3190 G)/(H), L plug connector (L),	
Power consumption (W) ⁽²⁾ DC 0.5 (With indicator light: 0.55) Apparent power (VA) 100 V 0.9 (With indicator light: 1.0) Ac 110 V 1.0 (With indicator light: 1.1) [115 V] [1.1 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.9) 220 V 1.9 (With indicator light: 2.0) [230 V] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy olenoid Valve Spe Applicable solenoid valve Electrical entry	ecifica	1 0.0	Grommet (16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M)	
Apparent power (VA) AC $100 V$ 0.9 (With indicator light: 1.0) AC $100 V$ 0.9 (With indicator light: 1.0) $110 V$ 1.0 (With indicator light: 1.1) $[115 V]$ $[1.1$ (With indicator light: 1.2)] $200 V$ 1.8 (With indicator light: 1.9) $220 V$ 1.9 (With indicator light: 2.0) $[230 V]$ $[2.2$ (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy Dienoid Valve Spe Applicable solenoid valve Electrical entry Coil rated voltage (V) ⁽¹⁾	y ecifica model	1 0.c ations	Grommet (16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M) 24, 12, 6, 5, 3	
Apparent power (VA) AC 110 V [115 V] 1.0 (With indicator light: 1.1) [1.1 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.9) 220 V 1.9 (With indicator light: 2.0) [230 V] [230 V] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy olenoid Valve Spe Applicable solenoid valve Electrical entry Coil rated voltage (V) ⁽¹⁾	y ecifica model	1 0.0 ations DC 50/60 Hz	Grommet (M 1 ±109	16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M) 24, 12, 6, 5, 3 00, 110, 200, 220 6 of the rated voltage	
Apparent power (VA) AC [115 V] [1.1 (With indicator light: 1.2)] 200 V 1.8 (With indicator light: 1.9) 220 V 1.9 (With indicator light: 2.0) [230 V] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy olenoid Valve Spe Applicable solenoid valve Electrical entry Coil rated voltage (V) ⁽¹⁾	y ecifica model	1 0.0 ations DC 50/60 Hz DC	Grommet (M 1 ±109 0.5 (W	16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M) 24, 12, 6, 5, 3 00, 110, 200, 220 6 of the rated voltage ith indicator light: 0.55)	
200 V 1.8 (With indicator light: 1.9) 220 V 1.9 (With indicator light: 2.0) [230 V] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy olenoid Valve Spe Applicable solenoid valve Electrical entry Coil rated voltage (V) ⁽¹⁾	y ecifica model	1 0.0 ations DC 50/60 Hz DC 100 V	Grommet (M 1 ±10% 0.5 (W 0.9 (V	16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M) 24, 12, 6, 5, 3 00, 110, 200, 220 ⁄e of the rated voltage ith indicator light: 0.55) Vith indicator light: 1.0)	
[230 V] [2.2 (With indicator light: 2.3)]	Bore size (mm) Allowable kinetic energy olenoid Valve Spe Applicable solenoid valve Electrical entry Coil rated voltage (V) ⁽¹⁾ Allowable voltage Power consumption (W) ⁽²⁾	/ ecifica model AC	1 0.0 ations DC 50/60 Hz DC 100 V 110 V	Grommet (M 1 ±10% 0.5 (W 0.9 (V 1.0 (V	16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M) 24, 12, 6, 5, 3 00, 110, 200, 220 6 of the rated voltage ith indicator light: 0.55) /ith indicator light: 1.0) /ith indicator light: 1.1)	
Note 1) 110 VAC and 115 VAC types and 220 VAC and 230 VAC types are common	Bore size (mm) Allowable kinetic energy olenoid Valve Spe Applicable solenoid valve Electrical entry Coil rated voltage (V) ⁽¹⁾ Allowable voltage Power consumption (W) ⁽²⁾	/ ecifica model AC	1 0.0 ations DC 50/60 Hz DC 100 V 110 V [115 V]	Grommet (M 1 ±109 0.5 (W 0.9 (V 1.0 (V [1.1 (V	16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M) 24, 12, 6, 5, 3 00, 110, 200, 220 6 of the rated voltage ith indicator light: 0.55) /ith indicator light: 1.0) /ith indicator light: 1.1) /ith indicator light: 1.2)]	
	Bore size (mm) Allowable kinetic energy olenoid Valve Spe Applicable solenoid valve Electrical entry Coil rated voltage (V) ⁽¹⁾ Allowable voltage Power consumption (W) ⁽²⁾	/ ecifica model AC	1 0.0 ations DC 50/60 Hz DC 100 V 110 V [115 V] 200 V 220 V	Grommet (M 1 ±109 0.5 (W 0.9 (V 1.0 (V [1.1 (V 1.8 (V 1.9 (V 1.9 (V	16 0.090 SYJ3190 G)/(H), L plug connector (L), I plug connector (M) 24, 12, 6, 5, 3 00, 110, 200, 220 % of the rated voltage ith indicator light: 0.55) Vith indicator light: 1.0) Vith indicator light: 1.2)] Vith indicator light: 1.2)] Vith indicator light: 1.9)	

Standard Stroke

Bore size (mm)	Standard stroke
10	15, 30, 45, 60
16	15, 30, 45, 60

* If types for more than the strokes indicated in the table above (61 strokes) are required, please ask SMC.

Series CVJ5

Auto switch	Auto switch	No. of auto switches mounted					
mounting	model	2 (Same side)	2 (Different sides)	1	2	1	
tyle	D-C7□/C80	50	15	10	—	—	
ing s	D-H7□/H7□W	60	15	10			
ounti	D-H7NF	00	15	10	_	_	
Band mounting style	D-C73C/C80C	Note) 65	45	10			
Ban	D-H7C	60	15	10	_	_	
style	D-A7□/A80 D-A7□H/A80H D-A73C/A80C	_	_	_	10	5	
Rail mounting style	D-F7□/J79 D-F7□V D-J79C	_	_	_	5	5	
	D-A79W/F7□W D-J79W D-F7□WV/F79F	_	_	_	15	10	

Minimum Stroke for Auto Switch Mounting (mm)

Note) A type for 65 stroke is not available.

Mounting Style and Accessory/For details, refer to page 10-15-9.

		-		
	Mounting	Basic style	Axial foot style	Rod side style Flange side style
Standard equipment	Mounting nut	•	•	•
Stan	Rod end nut	•	•	•
Option	Single knuckle joint	•	•	•
Opt	Double knuckle joint (With pin) *	•	•	●

* Knuckle pin and set ring are shipped together.

Weight			
Во	re size (mm)	10	16
Basic weight*		74	107
Additional weight	per each 15 mm of stroke	6.5	9.5
Mounting	Axial foot style	7	19
bracket weight	Rod side flange	5	13

* Mounting nut and rod end nut are included in the basic weight.

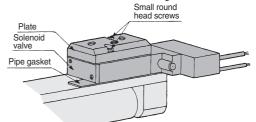
Calculation: (Example) CVJ5L10-45-1G

- Additional weight6.5/15 stroke
- Cylinder stroket45 stroke
- Weight of bracket7 (g) (Axial foot style) 74 + 6.5/15 x 45 + 7 = 100.5 g

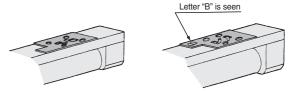
Mounting Bracket Part No.

Bore size (mm)	10	16
Foot	CJ-L010B	CJ-L016B
Flange	CJ-F010B	CJ-F016B

Auto Switch Mounting Bracket Part No. (Band mounting style)

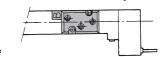

Bore size (mm)	Part no.	Note
10	BJ2-010	Common for the types of
16	BJ2-016	D-C7, C8 and D-H7

Changing between Rod Extended when Energized and Rod Retracted when Energized

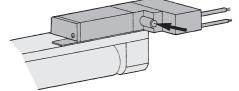

<Step>

This procedure is for changing the rod extended when energized to the rod retracted when energized.

1. Using a screwdriver, loosen the two small round head screws, and remove the plate and the solenoid valve. At this time, instead of removing the plate and the solenoid valve separately, remove them together, with the round head screws remaining inserted.


2. Turn the pipe gasket at 180° and mount, showing the letter "B".

3. Install the solenoid valve and the plate, and tighten the small round head screws, with a screw driver. After tightening, press the manual button on the solenoid valve, check for any air leaks, and verify the operating conditions. When the cylinder is viewed from above, the position of the gasket is as shown in the figure below.


Rod extended when energized

Rod retracted when energized

Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.

Other than the models listed in "How to Order", the following auto switches are applicable. For detailed specifications, refer to page 10-20-1.

Туре	Model	Electrical entry	Features		
	D-A80	Grommet			
	D-A80H	Grommer			
Reed switch	D-A80C	Connector	Without indicator light		
	D-C80	Grommet			
	D-C80C	Connector			
Solid state switch	D-F7NTL	Grommet	With timer		
* With pre-wire connector is available for D-F7NTL type, too. For details, refer to page 10-20-61.					

10-15-6

RE^A_B

REC

C□X

C□Y

MQM

CE1

CE2

ML2B

C_G^J5-S

CV

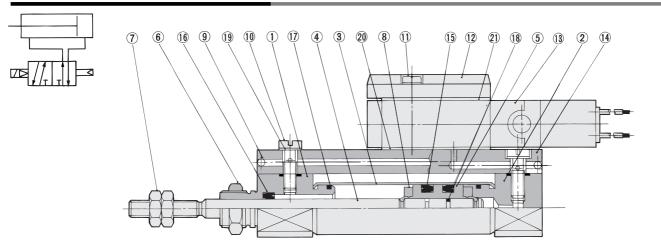
MVGQ

CC

RB

J

D-

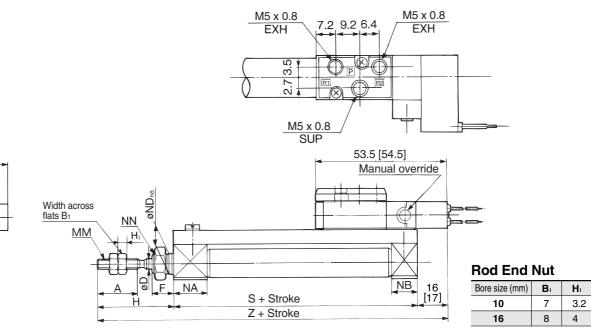

-X

20-

Data

Valve Mounted Cylinder Double Acting, Single Rod Series CVJ5

Construction/(Not able to disassemble.)


Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cylinder tube	Stainless steel	
4	Piston rod	Stainless steel	
(5)	Piston	Brass	
6	Mounting nut	Brass	Nickel plated
\bigcirc	Rod end nut	Rolled steel	Nickel plated
8	Bumper	Urethane	
9	Steel ball	Carbon steel	
10	Stud	Brass	Electroless nickel plated
1	Phillips screw	Rolled steel	Black zinc chromated

No.	Description	Material	Note	RHC		
12	Plate	Zinc alloy				
(13)	Solenoid valve	—	* Refer to the note below.	MK(2)		
14	Pipe	Aluminum alloy	Clear anodized			
15	Piston seal	NBR		RSG		
16	Rod seal	NBR				
17	Tube gasket	NBR		RS ^H		
18	Piston gasket	NBR				
(19)	Gasket	Resin		RZQ		
20	Pipe gasket	NBR				
21	Plate gasket	NBR		MIs		
* How to order solenoid valves						
SYJ3190- Voltage Electrical entry						

Basic Style (B)

CVJ5

*[]: Denotes the values of AC.

28 [34.5]

15

E

-¢

B

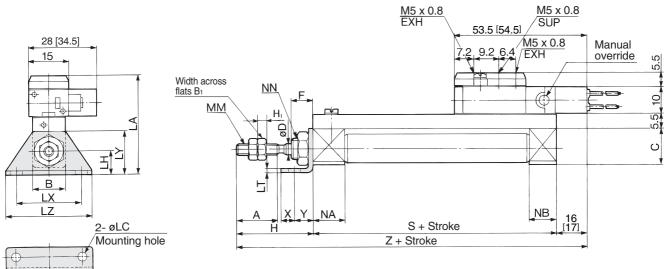
5.5

1

Ģ

υ

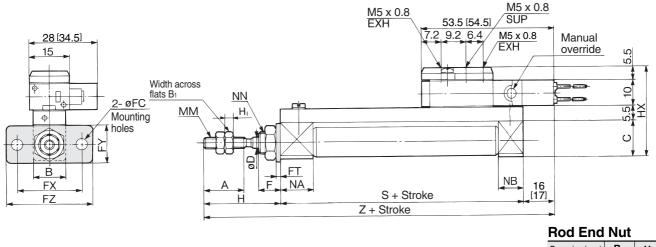
5.5 5.5


Bore size (mm)	Α	в	С	D	F	н	НХ	ММ	NA	NB	ND	NN	S	Z
10	15	12	14	4	8	28	35	M4 x 0.7	12.5	9.5	8 ⁰ _{-0.022}	M8 x 1	46	90 [91]
16	15	18	20	5	8	28	41	M5 x 0.8	12.5	9.5	10 ⁰ 0.022	M10 x 1	47	91 [92]

Series CVJ5

Axial Foot Style (L)

CVJ5L


Rod End Nut									
Bore size (mm)	B1	H1							
10	7	3.2							
16	8	4							

*[]: Denotes the values of AC.

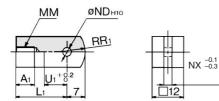
Bore size (mm)	Α	В	С	D	F	Н	LA	LC	LH	LT	LX	LY	LZ	ММ	NA	NB	NN	S	Х	Y	Z
10	15	12	14	4	8	28	38	4.5	9	1.6	24	16.5	32	M4 x 0.7	12.5	9.5	M8 x 1	46	5	7	90 [91]
16	15	18	20	5	8	28	46	5.5	14	2.3	33	25	42	M5 x 0.8	12.5	9.5	M10 x 1	47	6	9	91 [92]

Rod Side Flange Style (F)

CVJ5F Rod extended/retracted when energized

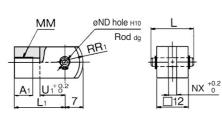
Bore size (mm)	B1	Hı
10	7	3.2
16	8	4

*[]: Denotes the values of AC.


Bore size (mm)	Α	В	С	D	F	FC	FT	FX	FY	FZ	Н	HX	ММ	NA	NB	NN	S	Z
10	15	12	14	4	8	4.5	1.6	24	14	32	28	35	M4 x 0.7	12.5	9.5	M8 x 1	46	90 [91]
16	15	18	20	5	8	5.5	2.3	33	20	42	28	41	M5 x 0.8	12.5	9.5	M10 x 1	47	91 [92]

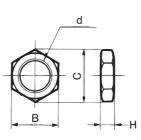
Accessory Dimensions

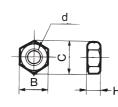
Single Knuckle Joint


Knuckle Pin

				Ma	aterial: F	lolle	d s	teel	
Part no.	Applicable bore size	A 1	Lı	мм	ND ^{H10}	NX	R₁	U₁	
I-J010B	10	8	21	M4 x 0.7	3.3 ^{+0.048}	3.1	8	9	
I-J016B	16	8	25	M5 x 0.8	5 ^{+ 0.048}	6.4	12	14	

Double Knuckle Joint


* Knuckle pin and set ring are shipped together.


H 4	L		
mt	l		<u>6</u>
			Q
		- 4n -	01
			0

Material: Stainless steel								
Part no.	Applicable bore size	Dd9	d	L	e	m	t	Applicable snap ring
IY-J010	10	3.3 -0.030	3	16.2	12.2	1.7	0.3	Type C 3.2
IY-J015	16	5 -0.030	4.8	16.6	12.2	1.5	0.7	Type C 5

Mounting Nut

Rod End Nut

				Materi	al: Iron
Part no.	Applicable bore size	в	с	d	н
NTJ-010A	10	7	8.1	M4 x 0.7	3.2
NTJ-015A	16	8	9.2	M5 x 0.8	4

				Μ	atei	rial	R	olle	d steel
	Part no.	Applicable bore size	A 1	I	Г	L	.1		MM
	Y-J010B	10	8	16	6.2	2	1	M	4 x 0.7
	Y-J016B	16	16 11 16		6.6 2		1	M5 x 0.8	
I	Part no.	NDd9	NDH	0	N	x	R	1 1	U1
	Y-J010B	3.3 -0.030 -0.060	3.3 ^{+ 0.}	048	3.	2		8	10
	Y-J016B	5 ^{-0.030} -0.060	5 ^{+0.}	048	6.	5	1	2	10

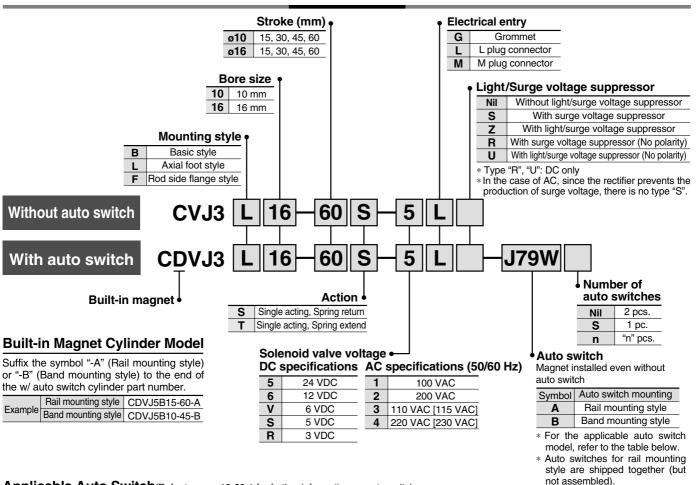
				Material	: Brass
Part no.	Applicable bore size	в	с	d	н
SNJ-010B	10	11	12.7	M8 x 1.0	4
SNJ-016B	16	14	16.2	M10 x 1.0	4

RHC
MK(2)
RSGQ
RS ^H
RZQ
MI s
CEP1
CE1
CE2
ML2B
C _G ^J 5-S
CV
MVGQ
CC
RB
J
D-
-X
20-
Data

9

RE^AB

REC


C□X

C□Y

MQM

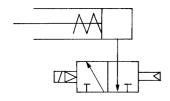
Valve Mounted Cylinder Single Acting, Single Rod, Spring Return/Extend Series CVJ3

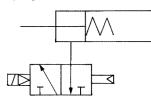
How to Order

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

			light		Load voltage Auto sv	Auto swit	ch model		Lead wire length (m) *			(m) *						
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	D	C	AC	Band mounting	Rail mo		0.5	3	5	None	Pre-wire connector	Applica	ble load	
			Pul			•			Perpendicular	In-line	(Nil)	(L)	(Z)	(N)				
ch		Creaman		3-wire (NPN equivalent)	_	5 V	—	C76	-	A76H	•	•	-	_	—	IC circuit	_	
swi	-	Grommet	S			—	200 V	—	A72	A72H	•	٠	—	—	_			
Reed switch			Yes			12 V	100 V	C73	A73	A73H		•			—		Relay,	
R	Connector		2-wire	24 V	12 V		C73C	A73C	—		٠		\bullet	—		PLC		
	Diagnostic indication (2-color indication)	Grommet				—	_	—	A79W	—			-		—			
		Grommet	net 3-v	3-wire (NPN)		5 V, 12 V	H7A1	F7NV	F79			0	—	0	IC circuit			
ich l	- С			3-wire (PNP)	3-wire (PNP)			H7A2	F7PV	F7P		\bullet	0	—	0	IC circuit		
state switch	_			0	12 V	H7B	F7BV	J79	•		0	—	0					
te		Connector	SS	2-wire	24 V	12 V		·	H7C	J79C	—		\bullet			0		Relay,
sta	Diagnostic indication) ×	ř	3-wire (NPN)		5 V, 12 V		H7NW	F7NWV	F79W		\bullet	0	—	0	IC circuit	PLC
Solid	(2-color indication)	Grommot		3-wire (PNP)		5 V, 12 V		H7PW	—	F7PW		\bullet	0	—	0			
So	ľ í	Gronnier		2-wire		12 V		H7BW	F7BWV	J79W	•		0	—	0	—		
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		H7NF	-	F79F		\bullet	0	—	0	IC circuit		
* Lea	* Lead wire length symbols: 0.5 mNil (Example) C73C * Solid state switches marked with "O" are produced upon receipt of order.																	
		-			ample) (
					ample) (ample) (

• Since there are other applicable auto switches than listed, refer to page 10-15-12 for details.


• For details about auto switches with pre-wire connector, refer to page 10-20-66.


An auto switch cylinder with the switch installed can also be manufactured.

JIS Symbol Single acting, Spring return

Single acting, Spring extend

Made to Order Specifications Order (For details, refer to page 10-21-1.)					
Symbol	Specifications				
-XA□	Change of rod end shape				

Specifications

Action				Single acting, Single rod, Spring return/Spring extend			
Туре				Non-lube			
		Air					
				1.05 MPa			
sure				0.7 MPa			
sure				0.15 MPa			
rature			-10 to	50°C (No freezing)			
			R	ubber bumper			
			Not re	quired (Non-lube)			
				JIS Class 2			
				+ 1.0			
ו)				10, 16			
v factor)			1	.8 mm ² (0.1)			
				M5 x 0.8			
		Basic style, Axial foot style, Rod side flange style					
Piston speed			ø10: 50 to 750 mm/s, ø16: 50 to 350 mm/s				
Energ	у	10		(J) 16			
у		0.035 0.090					
ecifica	ations						
nodel				SYJ319			
		Grommet (G)/(H), L plug connector (L), M plug connector (M)					
	DC			24, 12, 6, 5, 3			
AC	50/60 Hz		1	00, 110, 200, 220			
			±10%	% of the rated voltage			
	DC			ith indicator light: 0.55)			
110			0.9 (With indicator light: 1.0)				
				Vith indicator light: 1 1)			
AC	[115 \		•	č ,			
AC	-	/]	[1.1 (V	č ,			
AC	[115 \	/] / /	[1.1 (V 1.8 (V 1.9 (V	Vith indicator light: 1.2)]			
	Energ y ecifica nodel	sure rature rature The second	sure sure sure rature Sure sure sure sure sure sure sure sure sure sure Su	sure −10 to sure −10 to rature −10 to Rt Not re Not re Basic style, Axial fo ø10: 50 to 750 to Energy 10 y 0.035 ecifications nodel Grommet (to M DC 4C 50/60 Hz 1 ±109 DC 0.5 (W 100 V 0.9 (V			

typ ſyp Rote 1) The vAc and The vac an

Standard Stroke

Bore size (mm)	Standard stroke	
10	15, 30, 45, 60	
16	15, 30, 45, 60	

Spring Back Force

pring Back Force (N						
Bore size (mm)	Retracted side	Extended side				
10	6.9	3.5				
16	14.2	6.9				

Series CVJ3

······································							
Auto switch	Auto switch	No. of auto switches mounted					
mounting	model	2 (Same side)	2 (Different sides)	1			
tyle	D-C7□/C80	50	15	10			
s bu	D-H7□/H7□W	60	15	10			
ounti	D-H7NF	00	10	10			
Band mounting style	D-C73C/C80C	65 Note)	15	10			
Ban	D-H7C	00	10	10			
style	D-A7□/A80 D-A7□H/A80H D-A73C/A80C	10	_	5			
Rail mounting style	D-F7□/J79 D-F7□V D-J79C	5	_	5			
Rail n	D-A79W/F7□W D-J79W D-F7□WV/F79F	15	_	10			

Minimum Stroke for Auto Switch Mounting (mm)

Note) A type for 65 stroke is not available.

Mounting Style and Accessory

(For details , refer to page 10-15-9.)

	Mounting	Basic style	Axial foot style	Rod side style Flange side style
dard	Mounting nut Rod end nut	•	•	•
Stan	Rod end nut	•	•	•
Option	Single knuckle joint	•	•	•
Opt	Double knuckle joint (With pin)*	•	•	•

* Knuckle pin and set ring are shipped together.

Accessory

Accessories of Series CVJ3 are the same specifications as those of series CVJ5. Refer to page 10-15-9.

Mounting Bracket Part No.

Bore size (mm)	10	16		
Foot	CJ-L010B	CJ-L016B		
Flange	CJ-F010B	CJ-F016B		

Auto Switch Mounting Bracket Part No. (Band mounting style)

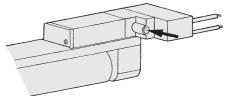
Bore size (mm)	Part no.	Note
10	BJ2-010	Common for the types of
16	BJ2-016	D-C7/C8 and D-H7

Weight

Spring Return (g)					
Во	re size (mm)	10	16		
Basic weight*	15 stroke	80	121		
	30 stroke	88	140		
Dasic weight	45 stroke	98	164		
	60 stroke	110	189		
Mounting	Axial foot style	7	19		
bracket weight	Rod side flange style	5	13		

* Mounting nut and rod end nut are included in the basic weight. Calculation: (Example) CVJ3L10-45S

• Mounting bracket weight \cdots 7 (g) (Axial foot) 98 + 7 = 105 g


Spring Extend

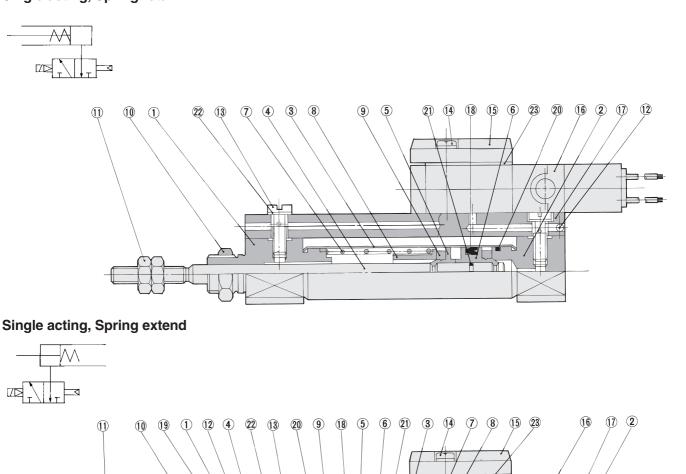
Boi	re size (mm)	10	16		
	15 Stroke	76	116		
Basic weight*	30 Stroke	83	134		
basic weight	45 Stroke	94	156		
	60 Stroke	104	180		
Mounting	Axial foot style	7	19		
bracket weight	Rod side flange style	5	13		
. Mounting put on	d rad and nut are included i	n the besie wei	a bt		

* Mounting nut and rod end nut are included in the basic weight. Calculation: (Example) CVJ3L10-45T

Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.

Other than the models listed in "How to Order", the following auto switches are applicable. For detailed specifications, refer to page 10-20-1.


Туре	Model	Electrical entry	Features		
	D-A80	Orammat			
	D-A80H	Grommet			
Reed switch	D-A80C	Connector	Without indicator light		
	D-C80	Grommet			
	D-C80C	Connector			
Solid state switch	D-F7NTL	Grommet	With timer		
* With pre-wire connector is available for D-F7NTL type, too. For details, refer to page 10-20-61.					

refer to page 10-20-61.

(g)

Construction/Component Parts

Single acting, Spring return

Ţψ

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cylinder tube	Stainless steel	
4	Piston rod	Stainless steel	
(5)	Piston A	Brass	
6	Piston B	Brass	
\bigcirc	Return spring	Piano wire	
8	Spring seat	Brass	
9	Bumper	Urethane	
10	Mounting nut	Brass	Nickel plated
1	Rod end nut	Brass	Nickel plated
(12)	Steel ball	Carbon steel	

No.	Description	Material	Note
(13)	Stud	Brass	Electroless nickel plated
14	Phillips screw	Rolled steel	Black zinc chromated
(15)	Plate	Zinc alloy	
(16)	Solenoid valve	—	Refer to "How to Order" below.*
17	Pipe	Aluminum alloy	Clear anodized
18	Piston seal	NBR	
(19)	Rod seal	NBR	
20	Tube gasket	NBR	
21	Piston gasket	NBR	
22	Gasket	Resin	
23	Plate gasket	NBR	
	the Outley enders a large statement		

* How to Order solenoid valves SYJ319-Voltage Electrical entry

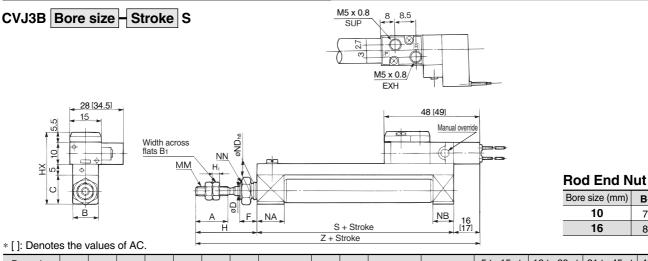
MП

MQM RHC MK(2) RSGQ RS^H RZQ MI s CEP1 CE1 CE2 ML2B C_G^J5-S CV MVGQ CC RB J D--X 20-Data

13

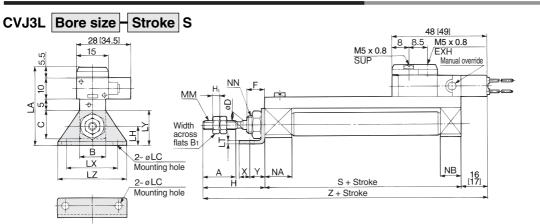
RE^A_B

REC


C□X

C□Y

SMC


Series CVJ3

Single Acting, Spring Return/Basic Style (B)

Bore size		в	~	n	E	ы	нх	ММ	NA	NB	ND	NN	5 to	15 st	16 to	30 st	31 to	45 st	46 to	60 st
(mm)	A	Б		U	Г			IVIIVI	INA	IND	ND	ININ	S	Z	S	Z	S	Z	S	Z
10	15	12	14	4	8	28	34.5	M4 x 0.7	12.5	9.5	8 _0.022	M8 x 1		96.5 [97.5]	60	104 [105]	72	116 [117]	84	128 [129]
16	15	18	20	5	8	28	40.5	M5 x 0.8	12.5	9.5	10 _{-0.022}	M10 x 1	52.5	96.5 [97.5]	61	105 [106]	73	117 [118]	85	129 [130]

Single Acting, Spring Return/Axial Foot Style (L)

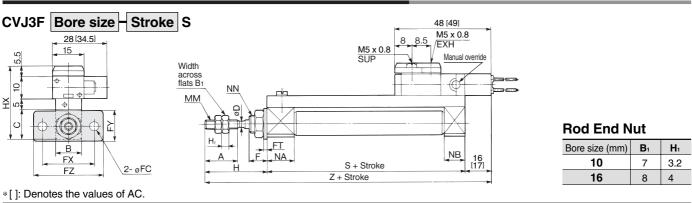
Rod End Nut

Bore size (mm)	B ₁	H ₁
10	7	3.2
16	8	4

B1

7

8 4

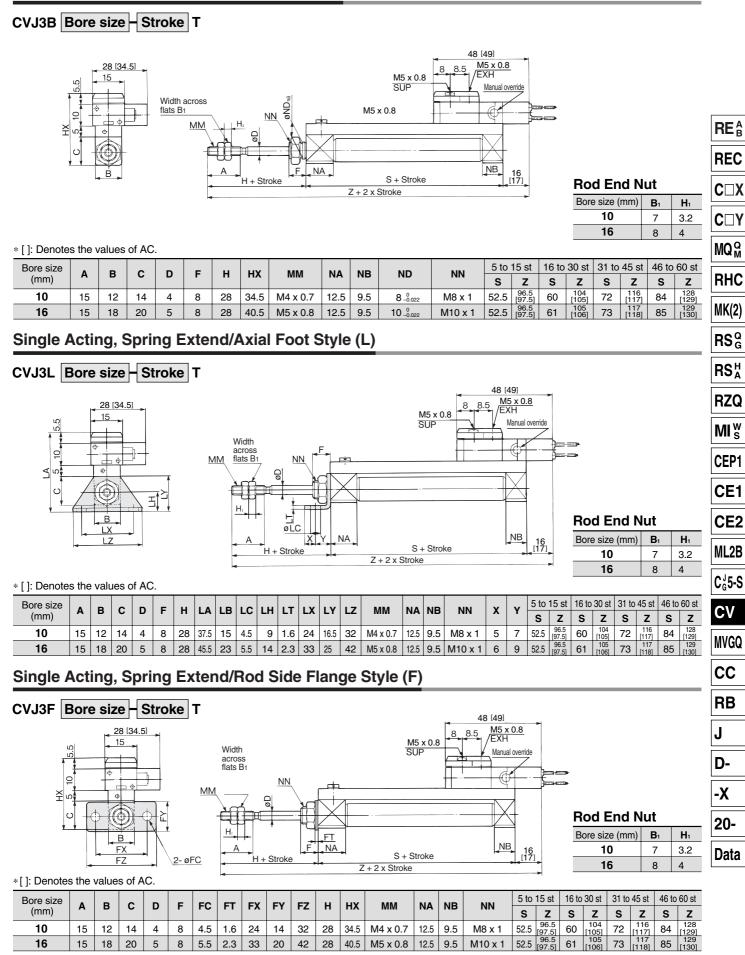

Ηı

3.2

* []: Denotes the values of AC.

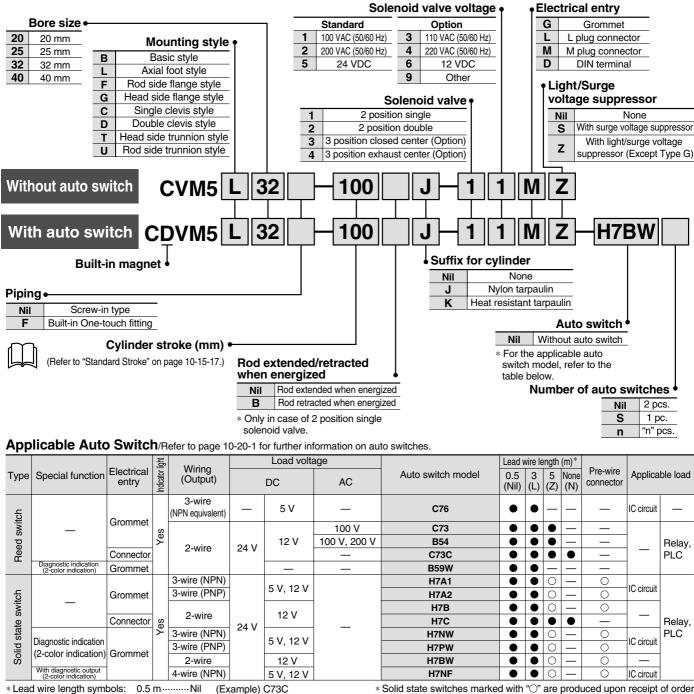
Bore size	•	в	~	2	F		1 4	пр	10	LH		LX	LY	17	мм	NA		NINI	v	v	5 to	15 st	16 to	30 st	31 to	45 st	46 to	60 st
(mm)	A	D		U		п		LB			-		LT				NA NB NN		^	T	S	z	s	z	S	z	S	Ζ
10	15	12	14	4	8	28	37.5	15	4.5	9	1.6	24	16.5	32	M4 x 0.7	12.5	9.5	M8 x 1	5	7		96.5 [97.5]		104 [105]		116 [117]		128 [129]
16	15	18	20	5	8	28	45.5	23	5.5	14	2.3	33	25	42	M5 x 0.8	12.5	9.5	M10 x 1	6	9	52.5	96.5 [97.5]	61	105 [106]	73	117 [118]	85	129 [130]

Single Acting, Spring Return/Rod Side Flange Style (F)



5 to 15 st 16 to 30 st 31 to 45 st 46 to 60 st Bore size в F FC ΗХ мм NN С D FT FX FY FZ н NA NB Α S Z S S Z S Z S Z S Z S Z S Z S Z S Z S Z S Z S S S S (mm) 10 15 12 14 4 8 4.5 1.6 24 14 32 28 34.5 M4 x 0.7 12.5 9.5 M8 x 1 16 15 18 20 5 8 5.5 2.3 33 20 42 28 40.5 M5 x 0.8 12.5 9.5 M10 x 1

15


Single Acting, Spring Extend/Basic Style (B)

Valve Mounted Cylinder Double Acting, Single Rod Series CVM5 ø20, ø25, ø32, ø40

How to Order

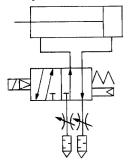
(Example) C73CL 3 m L 5 m Z

* Solid state switches marked with "O" are produced upon receipt of order.

(Example) C73CZ None ······ N (Example) C73CN

• Since there are other applicable auto switches than listed, refer to Best Pneumatics Vol. 6 for details.

For details about auto switches with pre-wire connector, refer to page 10-20-66.


Valve Mounted Cylinder Double Acting, Single Rod Series CVM5

Operation type can be changed to rod extended when energized or rod retracted when energized.

An auto switch cylinder with the switch installed can also be manufactured.

JIS Symbol

Symbol	Specifications
-XA□	Change of rod end shape
-XC4	With heavy duty scraper
-XC6	Piston rod and rod end nut made of stainless steel

Specifications

Applicable	bore size (mm)	20	25	32	40			
Туре		Non-lube type						
Fluid		Air						
Action		Double acting, Single rod						
Cushion			Rubber	bumper				
Proof pressure			1.05	MPa				
Maximum operating p	pressure		0.7	MPa				
Minimum operating p	ressure		0.15	MPa				
Ambient and fluid tem	perature	-10 to 50°C (No freezing)						
Lubrication		Not required (Non-lube)						
Thread tolerance		JIS Class 2						
Stroke length tolerand	ce			1.4 0				
Effective area of valve	e (Cv factor)		4.5 mm	² (0.25)				
Port size	Screw-in type		Rc	1/8				
FUILSIZE	Built-in One-touch fitting		O.D.: ø6	6/I.D.: ø4				
Piston speed (mm/s)	Note)	50 to 700*	50 to 650*	50 to 590*	50 to 420*			
Mounting		Basic style, Axial foot style, Rod side flange style, Head side flange style, Single clevis style, Double clevis style, Head side trunnion style, Rod side trunnion style						

Note) The figures marked with "*" represent the values of the cylinder with the silencer type exhaust throttle valve removed. To operate the cylinder at these values, prevent dust from entering by installing an AN120-M5 silencer on the EXH port.

Allowable Kinetic Energy

Bore size (mm)	20	25	32	40
Allowable kinetic energy	0.27	0.4	0.65	1.2

Solenoid Valve Specifications

Applicable solenoid	d valve	e model	Series VZ3□90				
Coil rated voltag	ge		Standard: 100/200 VAC (50/60 Hz), 24 VDC Option: 110/220 VAC, 12 VDC				
Allowable voltag	ge		-15 to 10%				
Coil insulation			Class B or equivalent (130°C)				
Electrical entry			Grommet, L plug connector, M plug connector, DIN terminal				
Power Note) consumption (W)	D	С	1.8 (With indicator light: 2.1)				
Apparent Note)	10	Inrush	4.5/50 Hz, 4.2/60 Hz				
power (VA)	AC	Holding	3.5/50 Hz, 3.0/60 Hz				

Note) At the rated voltage.

Standard Stroke

Bore size (mm)	Standard stroke (mm) Note)	Maximum stroke (mm)								
20										
25	25, 50, 75, 100, 125, 150,	1000								
32	200, 250, 300	1000								
40										
Note) Other intermediate strokes can be manufactured upon receipt of order. When exceeding 300 stroke, the allowable maximum stroke length is										

determined by the stroke selection table.

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature				
J	Nylon tarpaulin	70°C				
Κ	Heat resistant tarpaulin	110°C*				

* Maximum ambient temperature for the rod boot itself.

SMC

Series CVM5

Minimum Stroke for Auto Switch Mounting

		No. of	auto switches m	ounted	
Auto switch model	2	2	r		
model	Different sides Same side		Different sides	Same side	1
D-C7□/C80	15	50	15 . 45 (ⁿ⁻²)	50 + 45 (n - 2)	10
D-H7□/H7□W D-H7NF	15	60	$15 + 45 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	60 + 45 (n - 2)	10
D-C73C/C80C D-H7C	15	65	$15 + 50 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	65 + 50 (n - 2)	10
D-B5 D-B64 D-G5NTL	15	75	$15 + 50 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	75 + 55 (n – 2)	10
D-B59W	20	75	$20 + 50 \left(\frac{n-2}{2}\right) \\ (n = 2, 4, 6)$	70 + 00 (II = 2)	15

Weight

Weight					(kg)
	Bore size (mm)	20	25	32	40
	Basic style	0.25	0.32	0.39	0.67
	Axial foot style	0.40	0.48	0.55	0.94
Basic	Flange style	0.31	0.41	0.48	0.79
weight	Single clevis style	0.29	0.36	0.43	0.76
	Double clevis style	0.30	0.38	0.44	0.80
	Trunnion style	0.29	0.39	0.45	0.77
Additiona	al weight per each 50 mm of stroke	0.05	0.07	0.09	0.14
Option	Single knuckle joint	0.06	0.06	0.06	0.23
bracket	Double knuckle joint (With pin)	0.07	0.07	0.07	0.20

Calculation: (Example) CVM5L32-100-11G

Basic weight 0.55 (kg) (Axial foot ø32)

Additional weight 0.09/50 (kg/50 st)

Cylinder stroke 100 (st)

0.55 + 0.09 x 100 ÷ 50 = 0.73 kg

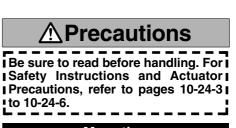
Mounting Style and Accessory

(For details about accessory brackets, refer to Best Pneumatics Vol. 6.)

Accessory	Sta	Indard equipm	Option				
Mounting	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double knuckle joint		
Basic style	• (1 pc.)	•	—	•	•		
Axial foot style	• (2)	•	—	•	•		
Rod side flange style	• (1)	•	—	•	•		
Head side flange style	• (1)	•	—	•	•		
Single clevis style	(1)	•	—	•	•		
Double clevis style (3)	(1)	•	•	•	•		
Head side trunnion style	• (1) ⁽²⁾	•	_	•	•		
Rod side trunnion style	• (1) ⁽²⁾	•	_	•	•		

Note 1) Mounting nut is not equipped with single clevis style and double clevis style. Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion.

Note 3) Pin and set ring are shipped together with double clevis and double knuckle joint.


Mounting Bracket Part No.

Bore size (mm)	20	25	32	40					
Axial foot*	CM-L020B	L020B CM-L032B							
Flange	CM-F020B	CM-F	CM-F040B						
Single clevis	CM-C020B	CM-C040B							
Double clevis**	CM-D020B	CM-E	CM-D040B						
Trunnion (With nut)	CM-T020B	CM-T	032B	CM-T040B					

* Two foot brackets and a mounting nut are attached.

When ordering the foot bracket, order 2 pcs. per cylinder.

* Clevis pin and snap ring (cotter pin for ø40) are packaged together.

Mounting

∧ Warning

(mm)

1. Do not rotate the cover.

If a cover is rotated when installing a cylinder or screwing a fitting into the port, it is likely to damage the junction part with cover.

∧Caution

1. Not able to disassemble.

Cover and cylinder tube are connected to each other by caulking method, thus making it impossible to disassemble. Therefore, internal parts of a cylinder other than rod seal are not replaceable.

- 2. Use caution to the popping of a snap ring. When replacing rod seals and removing and mounting a snap ring, use a proper tool (snap ring plier: tool for installing type C snap ring). Even if a proper tool is used, it is likely to inflict damage to a human body or peripheral equipment, as a snap ring may be flown out of the tip of a plier. Be much careful with the popping of a snap ring. Besides, be certain that a snap ring is placed firmly into the groove of rod cover before supplying air at the time of installment.
- 3. Do not touch the cylinder during operation. Use caution when handling a cylinder, which is running at a high speed and a high frequency, because the surface of a cylinder tube could get so hot enough as to cause you aet burns.
- 4. Do not use an air cylinder as an airhydro cylinder.

If it uses turbine oil in place of fluids for cylinder, it may result in oil leakage.

5. Conjoin the rod end part, so that rod boot might not be twisted.

If a rod boot is installed with being twisted when installing a cylinder, it will cause a rod boot to fail during operation.

Auto Switch Mounting Bracket Part No.

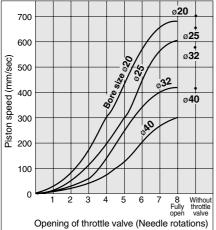
Bore (mm)	20	25	32	40
D-C7□/C80 D-H7□	BM2-020	BM2-025	BM2-032	BM2-040
D-B5□/B64 D-G5NTL	BA2-020	BA2-025	BA2-032	BA2-040

Built-in One-touch Fitting

One-touch fittings are installed on cylinders.

CVM5 Mounting style Bore size F For "How to Order", refer to page 10-15-16.

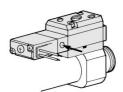
Built-in One-touch fitting


Specifications

Action

Application/Tubing O.D.

Bore size (mm)	20	25	32	40
Applicable tubing O.D. (mm)	ø6/4	ø6/4	ø6/4	ø6/4
Applicable tubing material		sed for eitl or polyuret		


Opening Range of Throttle Valve and Driving Speed

Measuring conditions: Operating pressure 0.5 MPa Mounting: horizontal Load: no load on the return side The speeds indicated above are for reference.

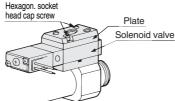
Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.

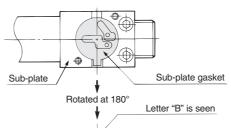
Piston Speed Adjustment

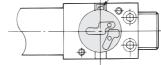
- To slow down the piston speed, screw in the needle of the silencer type exhaust throttle valve clockwise, which reduces the amount of air that is discharged.
- To adjust the piston extension side, regulate the "R1" side silencer type exhaust throttle valve.
 To adjust the retraction side, regulate the

"R2" side silencer exhaust throttle valve.


- The needle valve of the throttle valve can be fully opened by loosening it 8 turns from the fully closed position.
- The needle valve has a loosening prevention construction.

Bore size (mm)		20, 25,	32, 40							
Maximum operating pressure	0.7 MPa									
Minimum operating pressure	0.15 MPa									
Cushion	Rubber bumper									
Piping	Built-in One-touch fitting									
Piston speed	ø20	ø25	ø32	ø40						
(mm/s)	50 to 700	50 to 650	50 to 590	50 to 420						
Mounting	Head si	de flange styl levis style, R	/le, Rod side le, Single clev od side trunn runnion style	/is style,						
For the dimensions of mour	nting bracke	t, refer to pa	ages 10-15-	22 to 25.						


Changing between Rod Extended when Energized and Rod Retracted when Energized


Step [This procedure is for changing the rod extended when energized to the rod retracted when energized.]

 Using a tool, loosen the two hexagon socket bolts, and remove the plate and the solenoid valve. At this time, instead of removing the plate and the solenoid valve separately, remove them together, with the hexagon socket bolts remaining inserted.

2. A sub-plate gasket is inside the sub-plate. Invert this sub-plate gasket 180° and install it with its letter "B" visible. (A portion that protrudes is provided on the periphery of the sub-plate gasket, and the letter "B" is on one side of this protrusion.)


3. Install the solenoid valve and the plate, and tighten the hexagon socket bolts with a tool. The tightening torque is between 0.6 and 0.8 $N{\cdot}m.$

Double acting, Single rod

After tightening, press the manual button on the solenoid valve, check for any air leaks, and verify the operating conditions. Distinction between rod extended when energized and rod retracted when energized can be determined from the outside, by looking through the small window in the subplate.

Convex position of sub-plate gasket

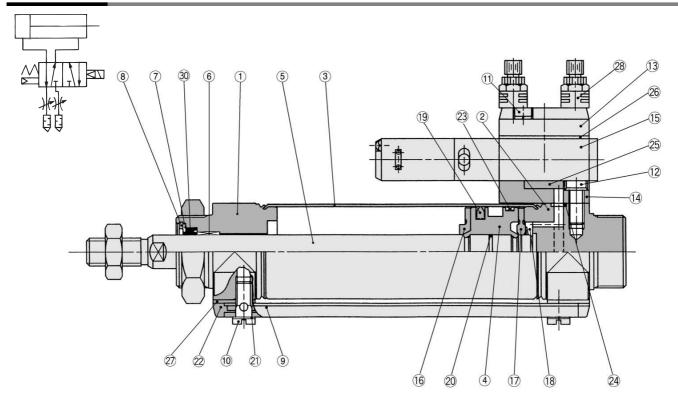
Rod retracted when energized

RHC MK(2) RSG **RS**^H RZQ MIs CEP1 CE1 CE2 ML2B C^J_c5-S CV MVGQ CC RB J D--X 20-Data

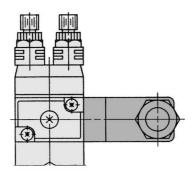
19

REA

REC


C

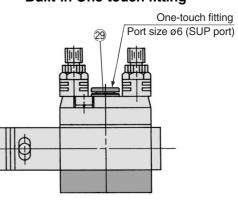
C


MQM

Series CVM5

Construction

DIN terminal



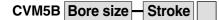
Component Parts

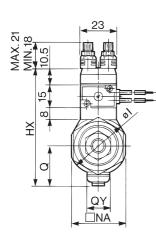
No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cylinder tube	Stainless steel	
(4)	Piston	Aluminum alloy	Chromated
(5)	Piston rod	Carbon steel	Hard chrome plated
6	Bushing	Oil-impregnated sintered alloy	
\bigcirc	Seal retainer	Rolled steel	Nickel plated
8	Snap ring	Carbon tool steel	Nickel plated
9	Pipe	Aluminum alloy	Clear anodized
10	Stud	Brass	Electroless nickel plated
1	Hex. socket head cap screw with spring washer	Stainless steel	M3 x 28ℓ
12	Hex. socket head cap screw with spring washer	Stainless steel	M3 x 10ℓ
13	Plate	Aluminum alloy	Metallic painted
14	Sub-plate	Aluminum alloy	Metallic painted
15	Solenoid valve	_	Refer to the "How to order" below.*
16	Bumper A	Urethane	
\bigcirc	Bumper B	Urethane	

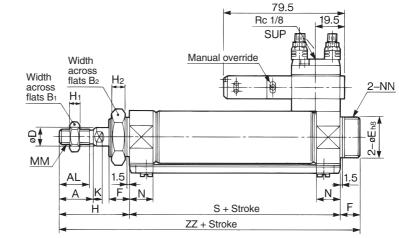
*How to order solenoid valves Electrical entry VZ3□90- Voltage

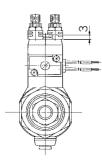
Built-in One-touch fitting

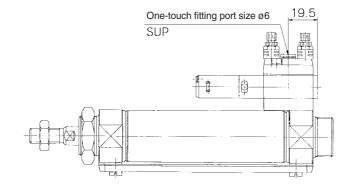
No.	Description	Material	Note			
18	Snap ring	Stainless steel				
(19)	Piston seal	NBR				
20	Piston gasket	NBR				
21)	Gasket	Resin				
22	Pipe gasket	Urethane rubber				
23	Wear ring	Resin				
24)	Head cover gasket	NBR				
25	Sub-plate gasket	NBR				
26	Gasket	NBR				
27	Spacer gasket	Resin	Not for ø25			
28	Exhaust throttle with silencer		ASN2-M5			
29	One-touch fitting		Port size: Ø6			

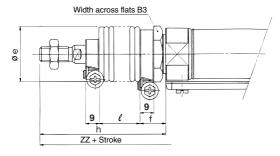

Replacement Parts


No	Description	Material	Part no.							
No.	Description	Materia	20	25	32	40				
30	Rod seal	NBR	PDU-8Z	PDU-10Z	PDU-12LZ	PDU-14LZ				


10-15-20


Basic Style (B)





Built-in One-touch fitting

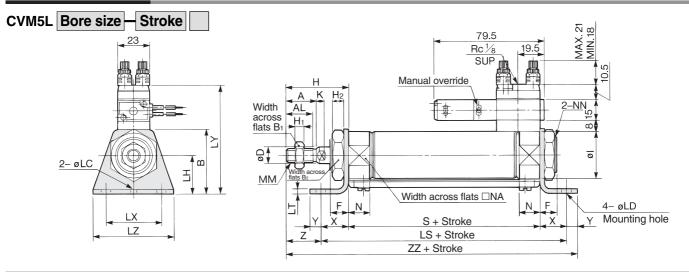
With rod boot

For DIN terminal and double solenoid, refer to page 10-15-25.

Bore size (mm)	Stroke range	Α	AL	B ₁	B ₂	D	Eh₅	F	Q	QY	н	Hı	H₂	ΗХ	I	К	MM	Ν	NA	NN	S	ZZ
20	Up to 300	18	15.5	13	26	8	20 ⁰ -0.033	13	19.8	14	41	5	8	65.3	28	5	M8 x 1.25	15	24	M20 x 1.5	62	116
25	Up to 300	22	19.5	17	32	10	26 ⁰ -0.033	13	22	14	45	6	8	70.5	33.5	5.5	M10 x 1.25	15	30	M26 x 1.5	62	120
32	Up to 300	22	19.5	17	32	12	26 ⁰ -0.033	13	25.8	16	45	6	8	76.5	37.5	5.5	M10 x 1.25	15	34.5	M26 x 1.5	64	122
40	Up to 300	24	21	22	41	14	32 ⁰ -0.039	16	29.8	16	50	8	10	84.5	46.5	7	M14 x 1.5	21.5	42.5	M32 x 2	88	154

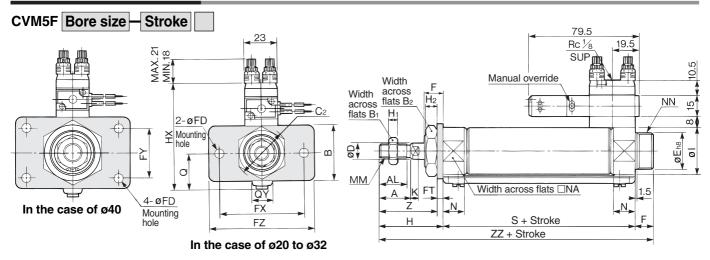
With Rod Boot

Bore size (mm) B3 e	Ba			h								l					
	e	•	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	301 to 400	401 to 500	
20	30	36	17	68	81	93	106	131	156	—	12.5	25	37.5	50	75	100	—
25	32	36	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
32	32	36	17	72	85	97	110	135	160	185	12.5	25	37.5	50	75	100	125
40	41	46	19	77	90	102	115	140	165	190	12.5	25	37.5	50	75	100	125


* Long stroke type includes ones for strokes more than 301 mm.

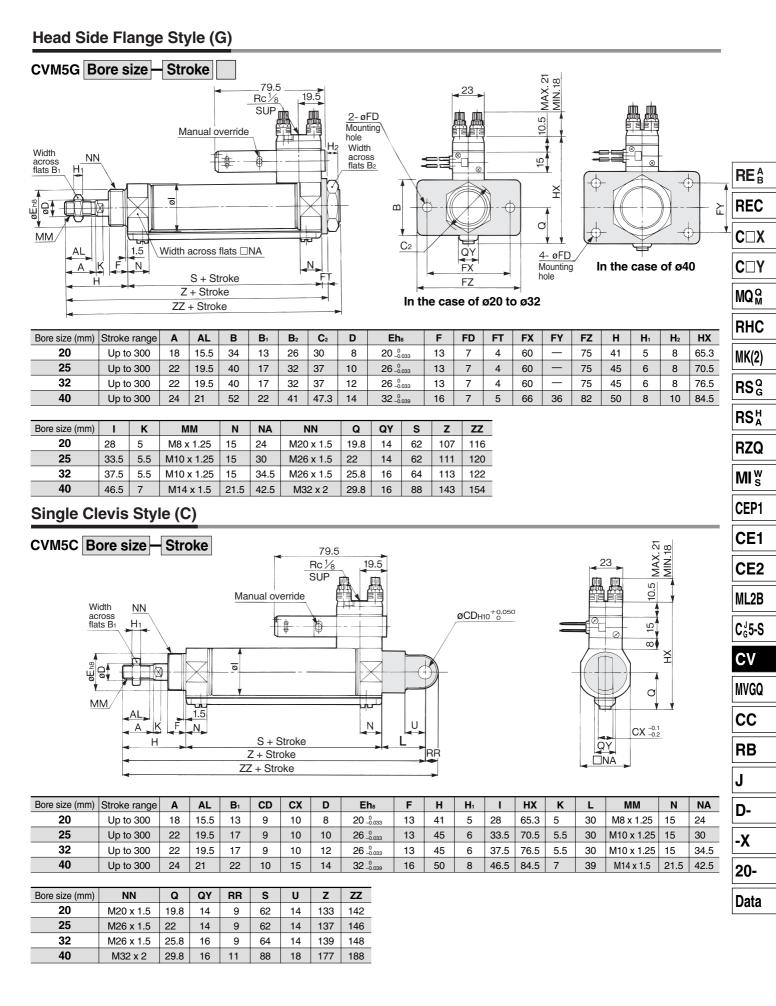
RE ^A B
REC
C□X
C□Y
MQM
RHC
MK(2)
RSGQ
RS [⊬]
RZQ
MI [₩] s
CEP1
CE1
CE2
ML2B
C ^J _G 5-S
CV
MVGQ
CC
RB
J
D-
-X
20-
Data

Series CVM5

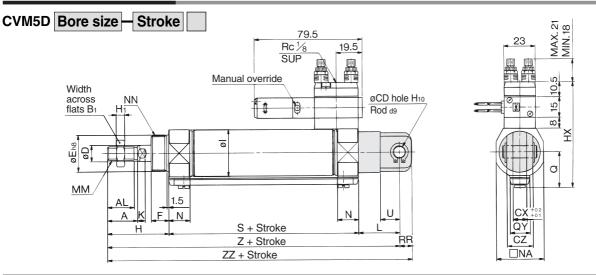

Axial Foot Style (L)

Bore size (mm)	Stroke range	Α	AL	В	B1	B ₂	D	F	н	H₁	H₂	I	κ	LC	LD	LH	LS	LT	LX	LY
20	Up to 300	18	15.5	40	13	26	8	13	41	5	8	28	5	4	6.8	25	102	3.2	40	70.5
25	Up to 300	22	19.5	47	17	32	10	13	45	6	8	33.5	5.5	4	6.8	28	102	3.2	40	76.5
32	Up to 300	22	19.5	47	17	32	12	13	45	6	8	37.5	5.5	4	6.8	28	104	3.2	40	78.8
40	Up to 300	24	21	54	22	41	14	16	50	8	10	46.5	7	4	7	30	134	3.2	55	84.8

Bore size (mm)	LZ	ММ	Ν	NA	NN	S	Х	Y	Z	ZZ
20	55	M8 x 1.25	15	24	M20 x 1.5	62	20	8	21	131
25	55	M10 x 1.25	15	30	M26 x 1.5	62	20	8	25	135
32	55	M10 x 1.25	15	34.5	M26 x 1.5	64	20	8	25	137
40	75	M14 x 1.5	21.5	42.5	M32 x 2	88	23	10	27	171

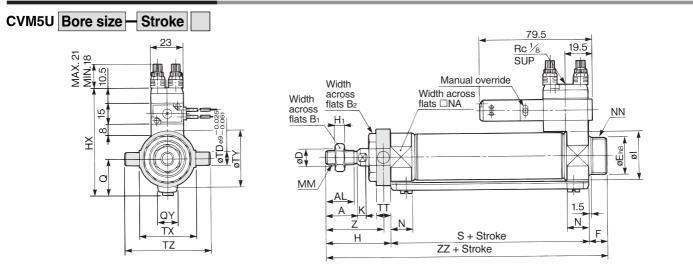

Rod Side Flange Style (F)

Bore size (mm)	Stroke range	Α	AL	В	B ₁	B ₂	C ₂	D	Eh₃	F	FD	FT	FX	FY	FZ	Н	H1	H ₂	HX
20	Up to 300	18	15.5	34	13	26	30	8	20 _0.033	13	7	4	60		75	41	5	8	65.3
25	Up to 300	22	19.5	40	17	32	37	10	26 _{-0.033}	13	7	4	60	_	75	45	6	8	70.5
32	Up to 300	22	19.5	40	17	32	37	12	26 _0.033	13	7	4	60		75	45	6	8	76.5
40	Up to 300	24	21	52	22	41	47.3	14	32 _{-0.039}	16	7	5	66	36	82	50	8	10	84.5


Bore size (mm)	I	К	ММ	Ν	NA	NN	Q	QY	S	Z	ZZ
20	28	5	M8 x 1.25	15	24	M20 x 1.5	19.8	14	62	37	116
25	33.5	5.5	M10 x 1.25	15	30	M26 x 1.5	22	14	62	41	120
32	37.5	5.5	M10 x 1.25	15	34.5	M26 x 1.5	25.8	16	64	41	122
40	46.5	7	M14 x 1.5	21.5	42.5	M32 x 2	29.8	16	88	45	154

Series CVM5

Double Clevis Style (D)

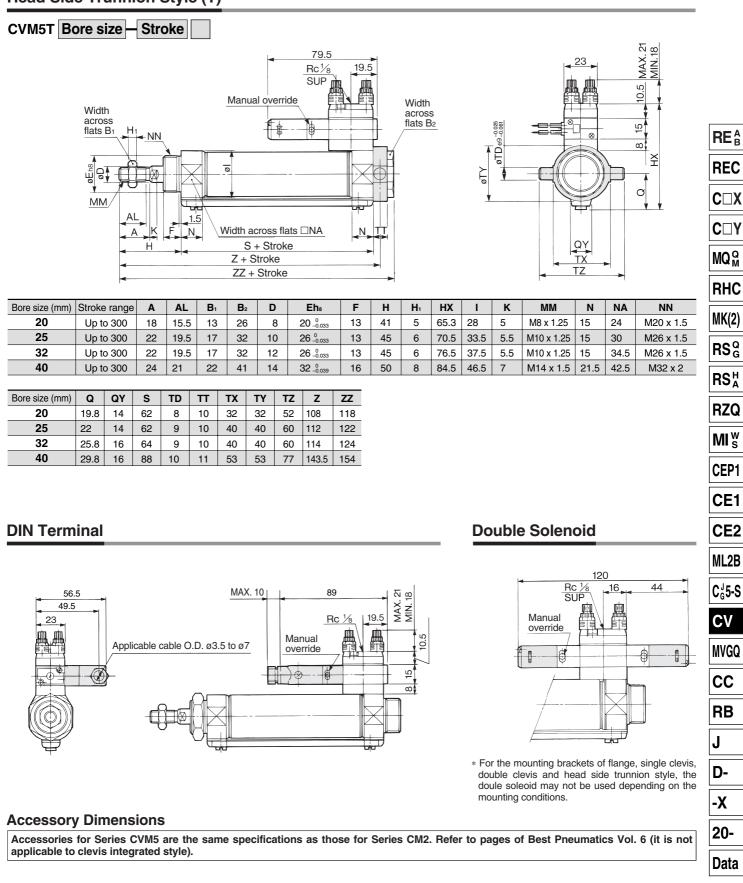


Bore size (mm)	Stroke range	Α	AL	B ₁	CD	СХ	CZ	D	Eh₅	F	н	Hı	ΗХ	I	К	L	MM	Ν	NA
20	Up to 300	18	15.5	13	9	10	19	8	20 0 0 -0.033	13	41	5	65.3	28	5	30	M8 x 1.25	15	24
25	Up to 300	22	19.5	17	9	10	19	10	26 _0.033	13	45	6	70.5	33.5	5.5	30	M10 x 1.25	15	30
32	Up to 300	22	19.5	17	9	10	19	12	26 _0.033	13	45	6	76.5	37.5	5.5	30	M10 x 1.25	15	34.5
40	Up to 300	24	21	22	10	15	30	14	32 _{-0.039}	16	50	8	84.5	46.5	7	39	M14 x 1.5	21.5	42.5

Bore size (mm)	NN	Q	QY	RR	S	U	Z	ZZ
20	M20 x 1.5	19.8	14	9	62	14	133	142
25	M26 x 1.5	22	14	9	62	14	137	146
32	M26 x 1.5	25.8	16	9	64	14	139	148
40	M32 x 2	29.8	16	11	88	18	177	188

* Clevis pin and snap ring (cotter pin for ø40) are packaged together.

Rod Side Trunnion Style (U)

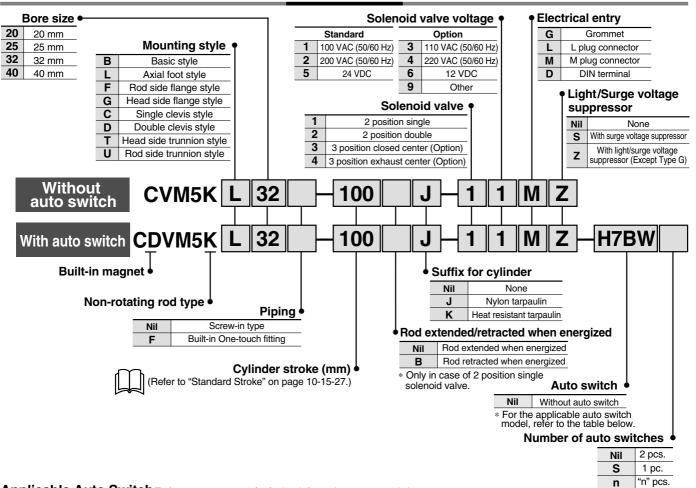


Bore size (mm)	Stroke range	Α	AL	B1	B ₂	D	Eh₃	F	н	H1	HX	Ι	К	ММ	N	NA	NN	Q
20	Up to 300	18	15.5	13	26	8	20 _0.033	13	41	5	65.3	28	5	M8 x 1.25	15	24	M20 x 1.5	19.8
25	Up to 300	22	19.5	17	32	10	26 _{-0.033}	13	45	6	70.5	33.5	5.5	M10 x 1.25	15	30	M26 x 1.5	22
32	Up to 300	22	19.5	17	32	12	26 _0.033	13	45	6	76.5	37.5	5.5	M10 x 1.25	15	34.5	M26 x 1.5	25.8
40	Up to 300	24	21	22	41	14	32 _{-0.039}	16	50	8	84.5	46.5	7	M14 x 1.5	21.5	42.5	M32 x 2	29.8

Bore size (mm)	QY	S	TD	TT	ΤХ	TY	ΤZ	Ζ	ZZ
20	14	62	8	10	32	32	52	36	116
25	14	62	9	10	40	40	60	40	120
32	16	64	9	10	40	40	60	40	122
40	16	88	10	11	53	53	77	44.5	154

25

Head Side Trunnion Style (T)



10-15-25

Valve Mounted Cylinder: Non-rotating Rod Type Double Acting, Single Rod Series CVN5K

26

How to Order

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

		El a stria a l	ight	Wiring		Load vol	tage		Lead v	vire le	ngth	(m) *			
Туре	Special function	Electrical entry	Indicator light	(Output)		DC	AC	Auto switch model	0.5 (Nil)	3 (L)		None (N)	Pre-wire connector	Applica	ble load
ch		Grommet		3-wire (NPN equivalent)	_	5 V	_	C76	•	•	_	_	—	IC circuit	_
Reed switch	-	Giommet	S				100 V	C73			۲		—		
eq			Yes	2-wire	24 V	12 V	100V, 200 V	B54				—	—		Relay,
В		Connector		2-wire	24 V		—	C73C		\bullet		\bullet		_	PLC
	Diagnostic indication (2-color indication)	Grommet					—	B59W			—	—	—		
				3-wire (NPN)				H7A1		\bullet	Ο	—	0	IC circuit	
5		Grommet		3-wire (PNP)		5 V, 12 V		H7A2		\bullet	0	—	0	IC CIrcuit	
switch	-			2-wire		10.1/		H7B			0		0		
te		Connector	es		24 V	12 V		H7C				\bullet	—	_	Relay,
state	Dia supertia indiantian		≻	3-wire (NPN)	24 V		_	H7NW			0		0		PLC
Solid	Diagnostic indication (2-color indication)			3-wire (PNP)		5 V, 12 V		H7PW		\bullet	0	—	0	IC circuit	
So	,	Giommet		2-wire		12 V		H7BW			0		0	—	
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		H7NF			Ó	_	0	IC circuit	
* Lea	d wire length symb	ools: 0.5	m۰		ample) (* (Solid state switches marke	d with	"O"	are p	orodu	iced upon	receipt	of order.

3 m ········ L (Example) C73CL 5 m ······· Z (Example) C73CZ

None N (Example) C73CN

• Since there are other applicable auto switches than listed, refer to Best Pneumatics Vol. 6 for details.

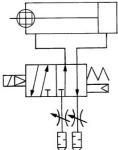
For details about auto switches with pre-wire connector, refer to page 10-20-66.

Valve Mounted Cylinder: Non-rotating Rod Type Double Acting, Single Rod Series CVM5K

A hexagon shaped rod that does not rotate.


Non-rotating accuracy

ø20, ø25 — ±0.7° ø32, ø40 — ±0.5°


Can operate without lubrication.

Auto switches can also be mounted.

Can be installed with auto switches to facilitate the detection of the cylinder's stroke position.

JIS Symbol

Made to Order	Made to Order Specifications (For details, refer to page 10-21-1.)
Symbol	Specifications
-XA□	Change of rod end shape

Specifications

	ble bore s	size (r	nm)	20	2	25	32		4	0
Rod non-rot	ating accu	iracy		±C).7°			± 0	.5°	
Туре						Non-	lube			
Fluid						Ai	r			
Action					Doub	e acting	g, Single r	od		
Proof pressu	ire					1.05	MPa			
Maximum op	perating p	ressu	re			0.7 N	ЛРа			
Minimum op	erating pr	essui	re			0.15	MPa			
Ambient and	I fluid tem	perat	ure		-10 to	₀ 50°C (No freezi	ng)		
Lubrication					Not r	equired	(Non-lub	e)		
Thread toler	ance					JIS CI				
Stroke lengt	h toleranc	e				+ 1				
Effective are		e (Cv	factor)		1	4.5 mm ⁴	. ,			
Piston speed				50 to 700*	50 to	650*	50 to 59	0*	50 to	420*
Port size	Screw					Rc				
	Built-ii	n One	e-touch fitting				/I.D.: ø4			
				Basic style Head s			/le, Rod s e, Single			
Mounting					clevis s	tyle, He	ad side tr	unn		
fron	aust thrott n entering	tle va by in	lve removed. Istalling an AN		ne cylir	nder at	these valu			nt dust
exh fron	aust thrott n entering (inetic	tle va by in	lve removed. Istalling an AN	To operate th 120-M5 silen	ne cylir	the EX	these valu H port.		preve	
fron	aust thrott n entering (inetic (mm)	tle va by in Ene	lve removed. Istalling an AN	To operate th	ne cylir	nder at t the EX	these valu			nt dust (J)
Allowable K Bore size Allowable kine	aust thrott n entering (inetic (mm) tic energy	tle va by in Ene	lve removed. Istalling an AN PTGY 20 0.27	To operate th 120-M5 silen 25 0.4	ne cylir icer on	nder at the EX	these valu H port. 32 65		preve	nt dust (J)
exh fron Allowable K Bore size	aust thrott n entering (inetic (mm) tic energy	tle va by in Ene	lve removed. Istalling an AN Prgy 20 0.27 fications	To operate the second s	ne cylir ncer on	nder at i the EX 3 0. Z3□90	these valu H port. 32 65	Jes,	40 1.2	nt dust (J)
Allowable K Bore size Allowable kine	aust thrott n entering (inetic (mm) tic energy live Sp id valve mo	tle va by in Ene	lve removed. Istalling an AN Prgy 20 0.27 fications	To operate th 120-M5 silen 25 0.4	eries V	ader at i the EX 3 0. Z3□90 C (50/60	these valu H port. 32 65 0 Hz), 24	Jes,	40 1.2	nt dust (J)
Allowable K Bore size Allowable kine Colenoid Va Applicable soleno	aust thrott n entering (inetic (mm) tic energy Ilve Sp id valve mc	tle va by in Ene	lve removed. Istalling an AN Prgy 20 0.27 fications	To operate the second s	eries V	23□90 C (50/60 VAC, -	these valu H port. 32 65 0 Hz), 24	Jes,	40 1.2	nt dust (J)
Allowable K Bore size Allowable kine Colenoid Va Applicable soleno Coil rated voltag	aust thrott n entering (inetic (mm) tic energy Ilve Sp id valve mc	tle va by in Ene	lve removed. Istalling an AN Prgy 20 0.27 fications	To operate the second s	eries V 00 VA0 10/220 -15 to	ader at 1 the EX 3 0. Z3□90 C (50/60 VAC, - 10%	these valu H port. 12 65 0 Hz), 24 12 VDC	Jes,	40 1.2	nt dust (J)
Allowable kine Allowable kine Allowable kine Colenoid Va Applicable soleno Coil rated voltage Allowable voltage Coil insulation Electrical entry	aust thrott n entering (inetic (mm) tic energy Ilve Sp id valve mc	tle va by in Ene	lve removed. Istalling an AN 20 0.27 fications Sta	To operate the silent of the s	eries V 00 VA0 10/220 15 to or equi	ader at t the EX 3 0. Z3□90 C (50/60 VAC, - 10% valent (these valu H port. 12 65 0 Hz), 24 12 VDC 130°C)	vDC	40 1.2	(J)
Allowable kine Allowable kine Allowable kine Colenoid Va Applicable soleno Coil rated voltage Allowable voltage Coil insulation Electrical entry	aust thrott n entering (inetic (mm) tic energy Ilve Sp id valve mc	tle va by in Ene	lve removed. Istalling an AN 20 0.27 fications Sta	To operate the second s	eries V 00 VA0 10/220 -15 to or equir ctor, M	Z3□90 C (50/60 VAC, - 10% valent (plug cc	these valu H port. 12 65 0 Hz), 24 12 VDC 130°C) ponnector,	vDC	40 1.2	(J)
exh from Allowable K Bore size Allowable kine Collenoid Va Applicable soleno Coil rated voltag Coil rated voltag Coil insulation Electrical entry Power consumption (W)	aust throttin entering (inetic (mm) tic energy live Sp id valve mc je je DC	eccif	lve removed. Istalling an AN 20 0.27 fications Sta	To operate the second s	eries V eries V 00 VA0 10/220 -15 to or equi ctor, M h indica	Z3□90 C (50/60 VAC, - 10% valent (plug cc	130°C)	vDC	40 1.2	(J)
exh from Allowable K Bore size Allowable kine Colenoid Va Applicable soleno Coil rated voltage Allowable voltage Coil insulation Electrical entry Power consumption (^{Note)} Apparent Power (VA)	aust thrott n entering (inetic (mm) tic energy lid valve mo je je pe 	eccif	lve removed. Istalling an AN 20 0.27 fications Sta	To operate the second s	eries V eries V 00 VA0 -15 to or equir ctor, M h indica	Z3□90 C (50/60 VAC, - 10% valent (plug cc ator ligh	these valu H port. 12 65 0 Hz), 24 12 VDC 130°C) ponnector, tt: 2.1) Hz	vDC	40 1.2	(J)
exh from Allowable K Bore size Allowable kine Collenoid Va Applicable soleno Coil rated voltag Coil rated voltag Coil insulation Electrical entry Power consumption (W)	aust thrott n entering (inetic (mm) tic energy lid valve mo je je pe 	ush	lve removed. Istalling an AN 20 0.27 fications Sta	To operate the second s	eries V eries V 00 VA0 -15 to or equir ctor, M h indica	Z3□90 C (50/60 VAC, 10% valent (plug cc ator ligh 4.2/60 l	these valu H port. 12 65 0 Hz), 24 12 VDC 130°C) ponnector, tt: 2.1) Hz	vDC	40 1.2	(J)
exh from Allowable K Bore size Allowable kine Colenoid Va Applicable soleno Coil rated voltage Allowable voltage Coil insulation Electrical entry Power consumption (^{Note)} Apparent Power (VA)	aust thrott n entering (inetic (mm) tic energy live Sp id valve mc je je je pe pe DC AC Inrr Hole	ush	lve removed. Istalling an AN 20 0.27 fications Sta	To operate the second s	eries V eries V 00 VA0 -15 to or equir ctor, M h indica	Z3□90 C (50/60 VAC, 10% valent (plug cc ator ligh 4.2/60 l	these valu H port. 12 65 0 Hz), 24 12 VDC 130°C) ponnector, tt: 2.1) Hz	vDC	40 1.2	(J)
exh from Allowable K Bore size Allowable kine Golenoid Va Applicable soleno Coil rated voltag Coil rated voltag Coil insulation Electrical entry Power Note) Apparent Note) power (VA) ote) At the rated Garadard St Bore size	aust thrott n entering (inetic (mm) tic energy live Sp id valve mc je je je pe pe DC AC Inrr Hole	tle va by in Ene Deci1 odel ush ding	Ive removed. Stalling an AN STORY 20 0.27	To operate the second s	eries V eries V 00 VA0 -15 to or equir ctor, M h indica	Z3□90 C (50/60 VAC, 10% valent (plug cc ator ligh 4.2/60 l	these valu H port. 12 65 0 Hz), 24 12 VDC 130°C) ponnector, tt: 2.1) Hz	vDC	40 1.2	(J)
exh from Allowable K Bore size Allowable kine Collenoid Va Applicable soleno Coil rated voltag Coil rated voltag Coil insulation Electrical entry Power (VA) Ote) At the rated Consumption (V) ote) At the rated Come size (mm)	aust thrott n entering (inetic (mm) tic energy live Sp id valve mc je je je pe pe DC AC Inrr Hole	tle va by in Ene Deci1 odel ush ding	lve removed. Istalling an AN 20 0.27 fications Sta	To operate the second s	eries V eries V 00 VA0 -15 to or equir ctor, M h indica	Z3□90 C (50/60 VAC, 10% valent (plug cc ator ligh 4.2/60 l	these valu H port. 12 65 0 Hz), 24 12 VDC 130°C) ponnector, tt: 2.1) Hz	vDC	40 1.2	(J)
exh from Allowable K Bore size Allowable kine Golenoid Va Applicable soleno Coil rated voltag Coil rated voltag Coil insulation Electrical entry Power Note) Apparent Note) power (VA) ote) At the rated Garadard St Bore size	aust thrott n entering (inetic (mm) tic energy live Sp id valve mc je je je pe pe DC AC Inrr Hole	tle va by in Ene Decil odel ush ding	Ive removed. Stalling an AN STORY 20 0.27	To operate the second s	eries V eries V 00 VA0 -15 to or equir ctor, M h indica	Z3□90 C (50/60 VAC, 10% valent (plug cc ator ligh 4.2/60 l	these valu H port. 12 65 0 Hz), 24 12 VDC 130°C) ponnector, tt: 2.1) Hz	vDC	40 1.2	(J)

40 Note) Other intermediate strokes can be manufactured upon receipt of order. Although it is possible to make up to 1000 stroke length, when exceeding the standard stroke, there may be the case which cannot meet the specifications.

200, 250, 300

Rod Boot Material

32

Syn	nbol	Rod boot material	Maximum ambient temperature
	J	Nylon tarpaulin	70°C
ŀ	<	Heat resistant tarpaulin	110°C*

* Maximum ambient temperature for the rod boot itself.

Series CVM5K

Minimum Stroke for Auto Switch Mounting

		No. of	auto switches m	ounted	
Auto switch		110.01	auto switches m		
model	2	2	1	า	
model	Different sides	Same side	Different sides	Same side	1
D-C7□/C80	15	50	$15 + 45\left(\frac{n-2}{2}\right)$	50 + 45 (n - 2)	10
D-H7□/H7⊡W D-H7NF	15	60	(n = 2, 4, 6···)	60 + 45 (n - 2)	10
D-C73C/C80C D-H7C	15	65	$15 + 50\left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	65 + 50 (n – 2)	10
D-B5□ D-B64 D-G5NTL	15	75	$15 + 50\left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)		10
D-B59W	20	75	(n = 2, 4, 6) 20 + 50 $\left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	75 + 55 (n - 2)	15

Weight

					(3/
	Bore size (mm)	20	25	32	40
	Basic style	0.25	0.32	0.39	0.67
	Axial foot style	0.40	0.48	0.55	0.94
Basic	Flange style	0.31	0.41	0.48	0.79
weight	Single clevis style	0.29	0.36	0.43	0.76
	Double clevis style	0.30	0.38	0.44	0.80
	Trunnion style	0.29	0.39	0.45	0.77
Additional w	veight per each 50 mm of stroke	0.05	0.07	0.09	0.14
Option	Single knuckle joint	0.06	0.06	0.06	0.23
bracket	Double knuckle joint (with pin)	0.07	0.07	0.07	0.20

Calculation: (Example) CVM5KL32-100-11G

Basic weight 0.55 (kg) (Axial foot style ø32)

Additional weight 0.09 (kg/50 st)

• Cylinder stroke 100 (st) 0.55 + 0.09 x 100 ÷ 50 = 0.73 kg

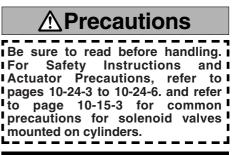
Mounting Bracket and Accessory

(For details about the attached bracket, refer to Best Pneumatics Vol. 6.)

Accessory	Sta	ndard equipm	ent	Op	tion
Mounting	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double knuckle joint
Basic style	• (1 pc.)	•	—	•	•
Axial foot style	• (2)	•	—	•	•
Rod side flange style	• (1)	•	—	•	•
Head side flange style	• (1)	•	—	•	•
Single clevis style	(1)	•	—	•	•
Double clevis style (3)	(1)	•	•	•	•
Head side trunnion style	• (1) ⁽²⁾	•	_	•	•
Rod side trunnion style	• (1) ⁽²⁾	•	_	•	•

Note 1) Mounting nut is not equipped with single clevis style and double clevis style. Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion.

Note 3) Pin and set ring are shipped together with double clevis and double knuckle joint.


Mounting Bracket Part No.

Bore size (mm)	20	25	32	40
Axial foot*	CM-L020B	CM-L	.032B	CM-L040B
Flange	CM-F020B	CM-F	CM-F040B	
Single clevis	CM-C020B	032B	CM-C040B	
Double clevis**	CM-D020B	CM-E	CM-D040B	
Trunnion (With nut)	CM-T020B	CM-T	032B	CM-T040B

* Two foot brackets and a mounting nut are attached.

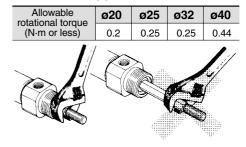
When ordering the foot bracket., order 2 pcs. per cylinder.

** Clevis pin and snap ring (cotter pin for ø40) are packaged together.

Precautions

🛆 Warning

1. Do not rotate the cover.


If a cover is rotated when installing a cylinder or screwing a fitting into the port, it is likely to damage the junction part with cover.

▲ Caution

(kg)

1. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.

If rotational torque is applied, the non-rotating guide will deform, causing a loss of non-rotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sure to retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.

Disassembly/Replacement

1. When replacing rod seals, please contact SMC.

Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.

2. Not able to disassemble.

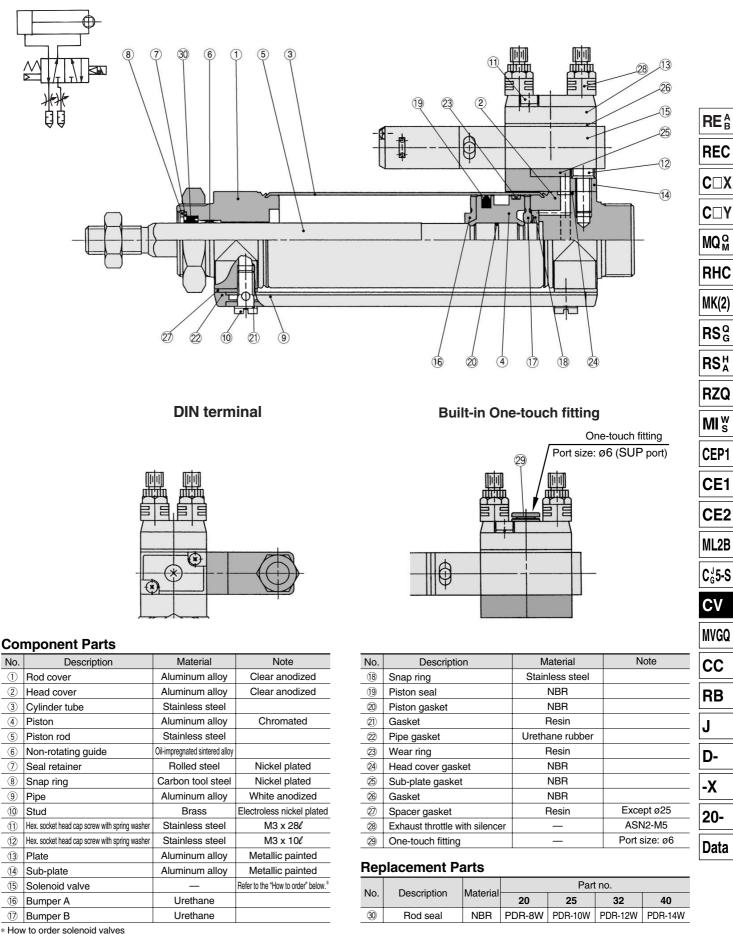
Since the cover and the cylinder tube are combined by crimping method, it is impossible to disassemble it. Therefore, the internal parts of a cylinder other than rod seal cannot be replaced at all.

3. Do not touch the cylinder during operation.

If the cylinder is operating at a high frequency, be aware that the cylinder tube surface could become very hot, creating the risk of burns.

4. Conjoin the rod end part, so that rod boot might not be twisted.

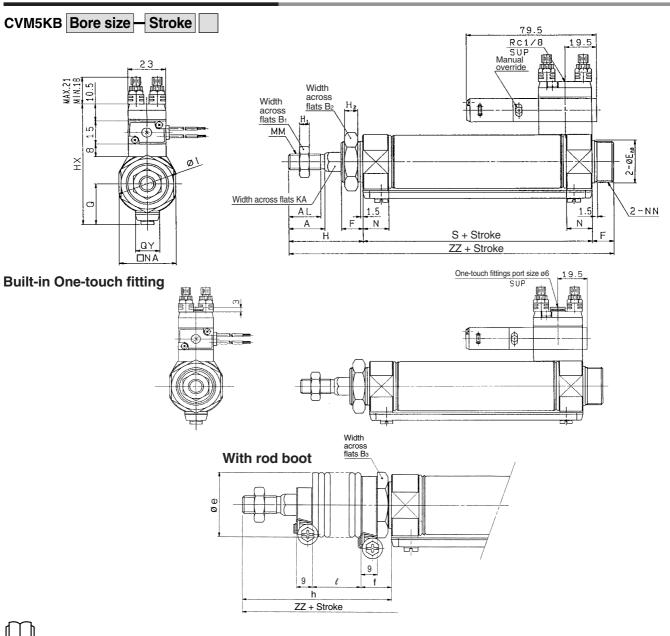
If a cylinder were installed with its rod boot being twisted, the rod boot could be damaged during operation.


Auto Switch Mounting Bracket Part No.

Bore size (mm)	20	25	32	40
D-C7□/C80 D-H7□	BM2-020	BM2-025	BM2-032	BM2-040
D-B5⊡/B64 D-G5NTL	BA2-020	BA2-025	BA2-032	BA2-040

Valve Mounted Cylinder: Non-rotating Rod Type Double Acting, Single Rod Series CVM5K

Construction

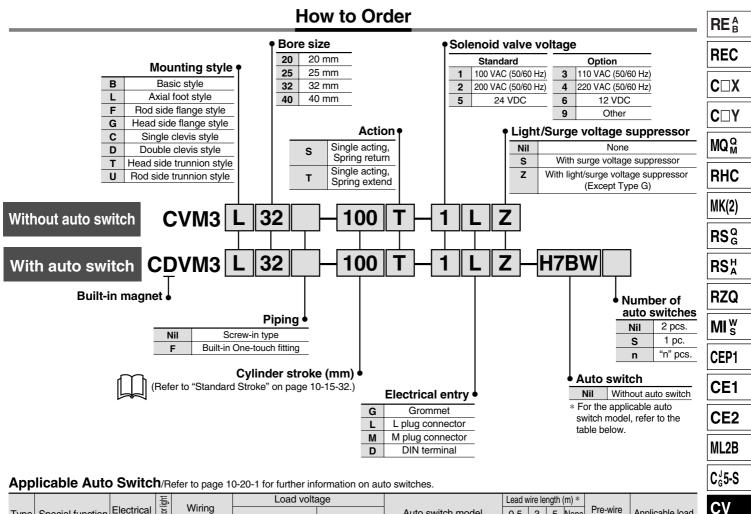


VZ3□90-Voltage Electrical entry

SMC

Series CVM5K

Basic Style (B): External Dimensions


L		- 11	
L			For DIN terminal and double solenoid, refer to page 10-15-25.
ŀ	~	\sim	T OF DIN terminal and double solehold, relet to page 10-13-23.

Bore (mm)	Stroke range	Α	AL	B1	B ₂	Eh₅	F	Q	QY	Н	H1	H ₂	ΗХ	I	KA	ММ	Ν	NA	NN	S	ZZ
20	Up to 300	18	15.5	13	26	20 _0_033	13	19.8	14	41	5	8	65.3	28	8.2	M8 x 1.25	15	24	M20 x 1.5	62	116
25	Up to 300	22	19.5	17	32	26 ⁰ _{-0.033}	13	22	14	45	6	8	70.5	33.5	10.2	M10 x 1.25	15	30	M26 x 1.5	62	120
32	Up to 300	22	19.5	17	32	26 _0_033	13	25.8	16	45	6	8	76.5	37.5	12.2	M10 x 1.25	15	34.5	M26 x 1.5	64	122
40	Up to 300	24	21	22	41	32 _0.039	16	29.8	16	50	8	10	84.5	46.5	14.2	M14 x 1.5	21.5	42.5	M32 x 2	88	154

With Rod Boot

	-	е		h					l					
Bore (mm)	Bore (mm) B ₃		T	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	1 to 50	51 to 100	101 to 150	151 to 200	201 to 300	
20	30	36	17	68	81	93	106	131	12.5	25	37.5	50	75	
25	32	36	17	72	85	97	110	135	12.5	25	37.5	50	75	
32	32	36	17	72	85	97	110	135	12.5	25	37.5	50	75	
40	41	46	19	77	90	102	115	140	12.5	25	37.5	50	75	

Valve Mounted Cylinder Single Acting, Single Rod, Spring Return/Extend Series CVM3 _{Ø20, Ø25, Ø32, Ø40}

			light			Load volta	age		Lead v	vire le	ngth (m) *				
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)		DC	AC	Auto switch model	0.5 (Nil)	3 (L)	5 (Z)	None (N)	Pre-wire connector	Applica	ble load	
ch		Crommet		3-wire (NPN equivalent)	—	5 V	—	C76	•	•	_	_	_	IC circuit	_	
Reed switch	_	Grommet	Yes				100 V	C73				_				
ed			۶	2-wire	24 V	12 V	100 V, 200 V	B54				_			Relay,	
Re		Connector			24 V		—	C73C				\bullet	—		PLC	
	Diagnostic indication (2-color indication)	Grommet				—	—	B59W			—	_	_			
				3-wire (NPN)		5 V, 12 V		H7A1			0	—	0	IC circuit		
с,		Grommet		3-wire (PNP)		5 V, 12 V	2 V	H7A2			0	_	0			
Solid state switch	_			2-wire		10.1/		H7B			0	_	0			
ite		Connector	es		24 V					H7C				\bullet	—	
sta	Diagnostic indication		۶	3-wire (NPN)	24 V	5 V, 12 V			H7NW			0	_	0	IC circuit	PLC
olid	(2-color indication)	Grommot		3-wire (PNP)		J V, 12 V		H7PW			0	—	0			
ŭ	, ,	Cionnet		2-wire		12 V		H7BW			0		0	—		
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		H7NF			0	_	0	IC circuit		
* Lead	d wire length sym				ample)		*	Solid state switches marke	d with	"O"	are	prod	uced upon	receipt	of order.	
	3 m L (Example) C73CL 5 m Z (Example) C73CZ None N (Example) C73CN															

• Since there are other applicable auto switches than listed, refer to Best Pneumatics Vol. 6 for details.

For details about auto switches with pre-wire connector, refer to page 10-20-66.

SMC

MVGQ

CC

RB

J

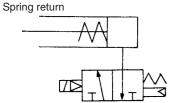
D-

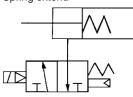
-X

20-

Data

Series CVM3


An auto switch cylinder with the switch installed can also be manufactured.


Specifications

Specificatio	113								
Applicabl	e bore size (mm)	20	25	32	40				
Model		Non-lube							
Action		Single	acting, Spring	return/Spring	extend				
Fluid			А	ir					
Cushion			Rubber	bumper					
Proof pressure	Э		1.05	MPa					
Maximum ope	rating pressure		0.7	MPa					
Minimum oper	rating pressure	0.18 MPa	Spring return	0.23 MPa Sp	ring extend				
Ambient and f	luid temperature	-10 to 50°C (No freezing)							
Lubrication		Not required (Non-lube)							
Thread tolerar	nce	JIS Class 2							
Stroke length	tolerance	+ 1.4							
Effective area	of valve (Cv factor)		4.5 mm	² (0.25)					
Piping	Screw-in type		Rc	1/8					
i iping	Built-in One-touch fitting		O.D.: ø6	i/I.D.: ø4					
Manual overrie	de		Non locking	(Standard)					
Piston speed	(mm/s)	50 to 700 50 to 650 50 to 590 50 to 420							
Mounting		Basic style, Axial foot style, Rod side flange style, Head side flange style, Single clevis style, Double clevis style, Head side trunnion style, Rod side trunnion style							

JIS Symbol

Spring extend

Allowable Kinetic Energy						
Bore size (mm)	20	25	32	40		
Allowable kinetic energy	0.27	0.4	0.65	1.2		

Solenoid Valve Specifications

Applicable solenoid valve model		ve model	VZ319		
Coil rated voltage			Standard: 100/200 VAC (50/60 Hz), 24 VDC Option: 110/220 VAC, 12 VDC		
Allowable voltage			-15 to 10% of the rated voltage		
Coil insulation			Class B or equivalent (130°C)		
Electrical entry			Grommet, L plug connector, M plug connector, DIN terminal		
Power Note) consumption (W)			1.8 (With indicator light: 2.1)		
Apparent Note)	Note) Inrush		4.5/50 Hz, 4.2/60 Hz		
power (VA)	AC	Holding	3.5/50 Hz, 3.0/60 Hz		

Note) At the rated voltage.

Standard Stroke

Bore size (mm)	Standard stroke (mm) Note)
20	25, 50, 75, 100, 125, 150*
25	25, 50, 75, 100, 125, 150 [*]
32	25, 50, 75, 100, 125, 150, 200 [*]
40	25, 50, 75, 100, 125, 150, 200, 250 [*]

Note 1) Intermediate stroke except mentioned above is produced upon receipt of order. Note 2) Strokes marked with "*" are the maximum strokes which are available.

Theoretical Output

Refer to "Theoretical Output Table 1" on page 10-23-1.

Spring Reaction Force

Refer to "Spring Reaction Force" on page 10-23-1.

Mounting Bracket and Accessory

Accessory	Standard equipment			Option	
Mounting	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double knuckle joint
Basic style	• (1 pc.)	•	_	•	•
Axial foot style	• (2)	•	—	•	•
Rod side flange style	• (1)	•	—	•	•
Head side flange style	• (1)	•	—	•	•
Single clevis style	(1)	•	—	•	•
Double clevis style (3)	(1)	•	•	•	•
Head side trunnion style	• (1) ⁽²⁾	•	_	•	•
Rod side trunnion style	• (1) ⁽²⁾	•	_	•	•

Note 1) Mounting nut is not equipped with single clevis style and double clevis style.

Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion. Note 3) Pin and set ring are shipped together with double clevis and double knuckle joint.

Weight

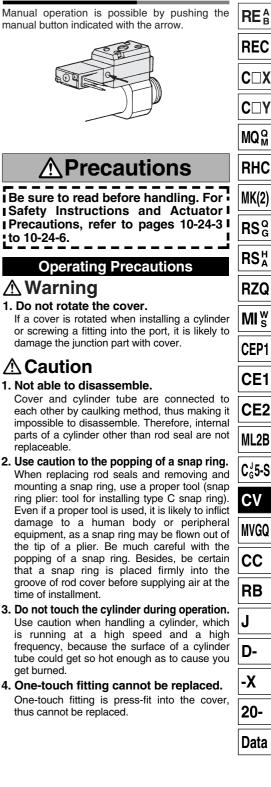
	Bore size (mm)	20 25		32	40
	25 stroke	0.30 (0.30)	0.40 (0.04)	0.52 (0.51)	0.87 (0.86)
	50 stroke	0.32 (0.32)	0.43 (0.43)	0.56 (0.56)	0.94 (0.93)
	75 stroke	0.37 (0.37)	0.52 (0.51)	0.68 (0.66)	1.13 (1.09)
Basic	100 stroke	0.39 (0.39)	0.55 (0.54)	0.73 (0.70)	1.19 (1.16)
weight	125 stroke	0.45 (0.44)	0.64 (0.61)	0.86 (0.82)	1.39 (1.33)
	150 stroke	0.47 (0.46)	0.67 (0.64)	0.90 (0.86)	1.46 (1.40)
	200 stroke	— (—)	— (—)	1.07 (1.02)	1.71 (1.63)
	250 stroke	— (—)	— (—)	— (—)	1.97 (1.85)
	Axial foot	0.15 (0.15)	0.16 (0.16)	0.16 (0.16)	0.27 (0.27)
Mounting	Flange	0.06 (0.06)	0.09 (0.09)	0.09 (0.09)	0.12 (0.12)
bracket	Single clevis	0.04 (0.04)	0.04 (0.04)	0.04 (0.04)	0.09 (0.09)
weight -	Double clevis	0.05 (0.05)	0.06 (0.06)	0.06 (0.06)	0.13 (0.13)
	Trunnion	0.04 (0.04)	0.07 (0.07)	0.07 (0.07)	0.10 (0.10)
Option	Single knuckle joint	0.06 (0.06)	0.06 (0.06)	0.06 (0.06)	0.23 (0.23)
bracket	Double knuckle (With pin)	0.07 (0.07)	0.07 (0.07)	0.07 (0.07)	0.20 (0.02)

Calculation: (Example) CVM3L32-100-1G (ø32, 100 stroke, Spring return)

Basic weight-----0.73 (kg)

• Weight of brackets 0.16 (kg)

0.73 + 0.16 = 0.89 kg


Minimum Stroke for Auto Switch Mounting

		No. of	auto switches m	ounted		
Auto switch	2		r	า		
model	Different sides	Same side	Different sides	Same side	1	
D-C7□/C80	15	50	1	50 + 45 (n - 2)	10	
D-H7□/H7□W D-H7NF	15	60	$15 + 45 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	60 + 45 (n - 2)	10	
D-C73C/C80C D-H7C	15	65	$15 + 50 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	65 + 50 (n - 2)	10	
D-B5□ D-B64 D-G5NTL	15	75	$15 + 50 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	75 + 55 (n – 2)	10	
D-B59W	20	75	$20 + 50 \left(\frac{n-2}{2}\right) \\ (n = 2, 4, 6)$	73 + 33 (11 - 2)	15	

Accessory Bracket

Further information on accessories are the same specifications as these of the standard double acting single rod. Refer to Best Pneumatics Vol. 6.

Manual Operation

C CE2

33

(mm)

Series CVM3

Built-in One-touch Fitting

CVM3 Mounting style Bore size

For "How to Order", refer to page 10-15-31.

Specifications

Built-in One-touch fitting

F

One-touch fittings are installed on cylinders.

Action	Single acting,	Spring return	Single acting,	Spring extend	
Bore size (mm)		20, 25,	32, 40		
Max. operating pressure	0.7 MPa				
Min. operating pressure	0.18	MPa	0.23	MPa	
Cushion	Rubber bumper				
Piping	Built-in One-touch fitting				
Piston speed	ø20	ø25	ø32	ø40	
(mm/s)	50 to 700	50 to 650	50 to 590	50 to 420	
Port size (Tube bore size)		O.D.: Ø6	6/I.D.: ø4		
Applicable bore size	Can be used for either nylon, soft nylon or polyurethane tube.				
Mounting	Basic style, Axial foot style, Rod side flange style, Head side flange style, Single clevis style, Double clevis style, Head side trunnion style, Rod side trunnion style				

For dimensions of each mounting bracket, refer to page 10-15-37 and after.

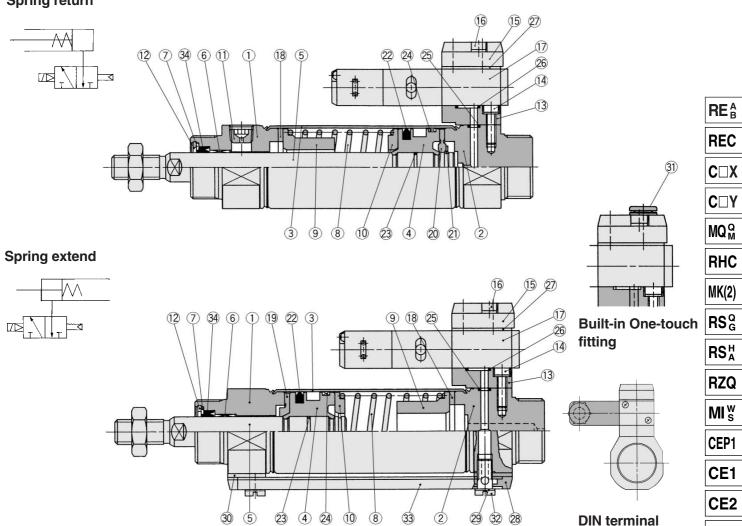
Mounting Bracket Part No.

Bore size (mm)	20	25	32	40
Axial foot*	CM-L020B	CM-L	.032B	CM-L040B
Flange	CM-F020B	CM-F032B		CM-F040B
Single clevis	CM-C020B	CM-C032B		CM-C040B
Double clevis**	CM-D020B	CM-D	032B	CM-D040B
Trunnion (with nut)	CM-T020B	CM-T	032B	CM-T040B

* Two foot brackets and a mounting nut are attached.

When ordering the foot bracket., order 2 pcs. per cylinder.

** Clevis pin and snap ring (cotter pin for ø40) are packaged together.


Auto Switch Mounting Bracket Part No.

Auto switch	Bore size (mm)					
model	20	25	32	40		
D-C7□/C80 D-H7□	BM2-020	BM2-025	BM2-032	BM2-040		
D-B5⊡/B64 D-G5NTL	BA2-020	BA2-025	BA2-032	BA2-040		

Valve Mounted Cylinder Single Acting, Single Rod, Spring Return/Extend Series CVM3

Construction

Spring return

Component Parts

No.	Description	Material	Note	
1	Rod cover	Aluminum alloy	Clear anodized	
2	Head cover	Aluminum alloy	Clear anodized	
3	Cylinder tube	Stainless steel		
4	Piston	Aluminum alloy	Chromated	
(5)	Piston rod	Carbon steel	Hard chromium electroplated	
6	Bushing	Oil-impregnated sintered alloy		
\bigcirc	Seal retainer	Rolled steel	Nickel plated	
8	Return spring	Steel wire	Zinc chromated	
9	Spring guide	Aluminum alloy	Chromated	
10	Spring seat	Aluminum alloy	Chromated	
1	Plug with fixed orifice	Alloy steel	Black zinc chromated	
12	Snap ring	Carbon tool steel	Nickel plated	
(13)	Sub-plate	Aluminum alloy	Metallic painted	
14	Hex. socket head cap screw with spring washer	Stainless steel	M3 x 10ℓ	
(15)	Plate	Aluminum alloy	Metallic painted	
16	Hex. socket head cap screw with spring washer	Stainless steel	M3 x 28ℓ	
17	Solenoid valve	—	Refer to "How to order" below.*	
(18)	Bumper	Urethane		
(19)	Bumper A	Urethane		

No.	Description	Material	Note
20	Bumper B	Urethane	
21	Snap ring	Stainless steel	
22	Piston seal	NBR	
23	Piston gasket	NBR	
24)	Wear ring	Resin	
25	Head cover gasket	NBR	
26	Sub-plate gasket	NBR	
27	Gasket	NBR	
28	Pipe gasket	Urethane rubber	
29	Gasket	Resin	
30	Spacer gasket	Resin	
31	One-touch fitting	—	Port size: ø6
32	Stud	Brass	Electroless nickel plated
33	Pipe	Aluminum alloy	Clear anodized

Replacement Parts

No.	No. Description Motorial		Part no.				
INO.	Io. Description N	ion Material	20	25	32	40	Data
34)	Rod seal	NBR	PDU-8Z	PDU-10Z	PDU-12LZ	PDU-14LZ	

* How to order solenoid valves

VZ319-Voltage Electrical entry

ML2B

C_G^J5-S

CV

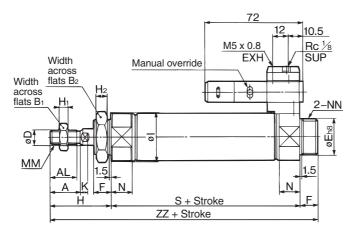
MVGQ

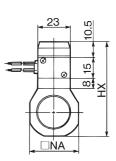
CC

RB

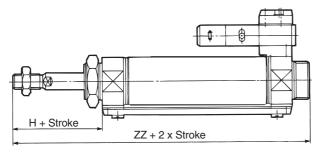
J

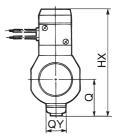
D-

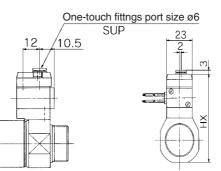

-X


20-

Series CVM3


Basic Style (B)


Single acting, Spring return: CVM3B Bore size - Stroke S



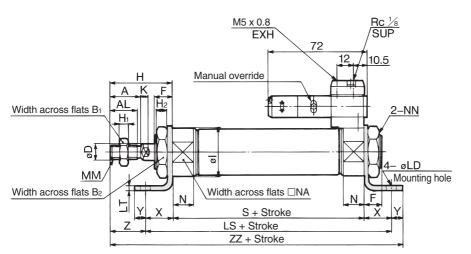
Single acting, Spring extend: CVM3B Bore size - Stroke T

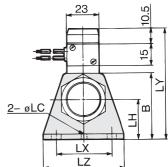
Built-in One-touch fitting

Bore size (mm)	Α	AL	B ₁	B ₂	D	Eh₀	F	Н	H1	H ₂	ΗХ	I	К	ММ	N	NA	NN
20	18	15.5	13	26	8	20 _0.033	13	41	5	8	57.5	28	5	M8 x 1.25	15	24	M20 x 1.5
25	22	19.5	17	32	10	26 _0.033	13	45	6	8	63.5	33.5	5.5	M10 x 1.25	15	30	M26 x 1.5
32	22	19.5	17	32	12	26 _0.033	13	45	6	8	68	37.5	5.5	M10 x 1.25	15	34.5	M26 x 1.5
40	24	21	22	41	14	32 _0.039	16	50	8	10	76	46.5	7	M14 x 1.5	21.5	42.5	M32 x 2

Dimensions by Stroke

Stroke	1 to 50		51 to	100	101 t	o 150	151 to 200		201 to 250	
Symbol Bore (mm)	S	ZZ	S	ZZ	S	ZZ	S	ZZ	S	ZZ
20	87	141	112	166	137	191	_	—	—	—
25	87	145	112	170	137	195	—	—	—	—
32	89	147	114	172	139	197	164	222	—	_
40	113	179	138	204	163	229	188	254	213	279


Single Acting/Spring Extend


Bore size (mm)	нх	Q	QY		
20	65.3	19.8	14		
25	70.5	22	14		
32	76.5	25.8	16		
40	84.5	29.8	16		

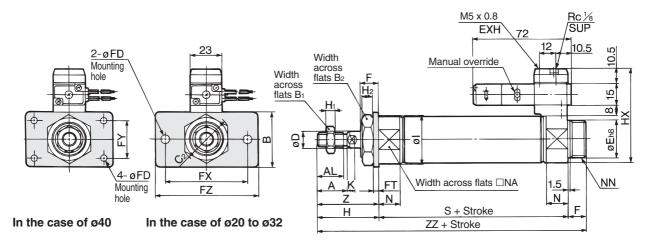
Axial Foot Style (L)

Single acting, Spring extend: CVM3L Bore size – Stroke T H + Stroke Z + Stroke ZZ + 2 x stroke

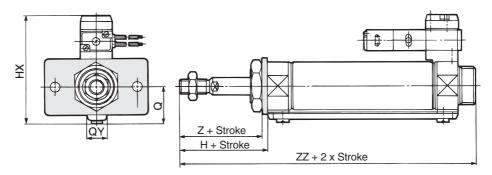
Bore size (mm)	Α	AL	в	B 1	B ₂	D	F	н	H1	H₂	I	К	LC	LD	LH	LT	LX	LY	LZ	ММ	N	NA
20	18	15.5	40	13	26	8	13	41	5	8	28	5	4	6.8	25	3.2	40	70.5	55	M8 x 1.25	15	24
25	22	19.5	47	17	32	10	13	45	6	8	33.5	5.5	4	6.8	28	3.2	40	76.5	55	M10 x 1.25	15	30
32	22	19.5	47	17	32	12	13	45	6	8	37.5	5.5	4	6.8	28	3.2	40	78.8	55	M10 x 1.25	15	34.5
40	24	21	54	22	41	14	16	50	8	10	46.5	7	4	7	30	3.2	55	84.8	75	M14 x 1.5	21.5	42.5

Bore size (mm)	NN	х	Y	z
20	M20 x 1.5	20	8	21
25	M26 x 1.5	20	8	25
32	M26 x 1.5	20	8	25
40	M32 x 2	23	10	27

Dimensions by Stroke


Stroke Bore Symbol	-	1 to 50)	51	l to 10	00	10	1 to 1	50	15	1 to 2	00	20	1 to 2	50
Bore Symbol (mm)	S	LS	ZZ	s	LS	ZZ	s	LS	ZZ	s	LS	ZZ	s	LS	ZZ
20	87	127	156	112	152	181	137	177	206		_	—		—	—
25	87	127	160	112	152	185	137	177	210	_	—	—	_	—	—
32	89	129	162	114	154	187	139	179	212	164	204	237	_	—	—
40	113	159	196	138	184	221	163	209	246	188	234	271	213	259	296

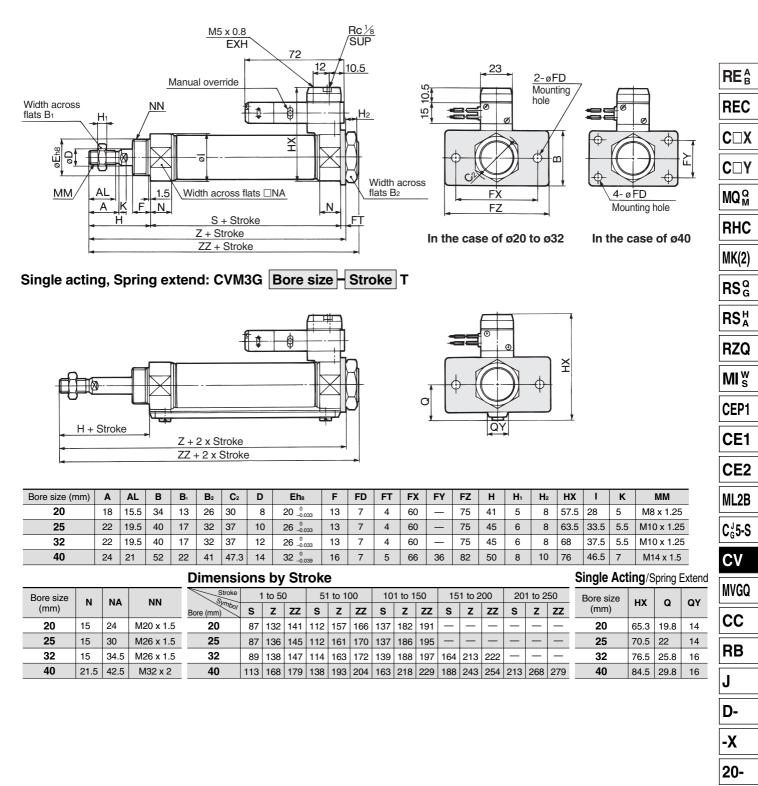
RE ^A B
REC
C□X
C□Y
MQM
RHC
MK(2)
RSGQ
RS [⊬]
RZQ
MI [₩] s
CEP1
CE1
CE2
ML2B
C _G ^J 5-S
CV
MVGQ
CC
RB
J
D-
-X
20-
Data


Series CVM3

Rod Side Flange Style (F)

Single acting, Spring return: CVM3F Bore size - Stroke S

Single acting, Spring extend: CVM3F Bore size - Stroke T

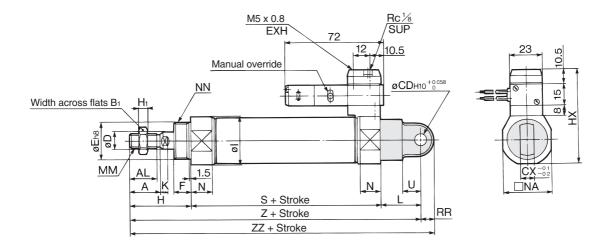


Bore size (mm)	Α	AL	В	B ₁	B ₂	C ₂	D	Eh₅	F	FD	FT	FX	FY	FZ	Н	Hı	H₂	ΗХ	I	К
20	18	15.5	34	13	26	30	8	20 ⁰ _{-0.033}	13	7	4	60	—	75	41	5	8	57.5	28	5
25	22	19.5	40	17	32	37	10	26 ⁰ 0.033	13	7	4	60	—	75	45	6	8	63.5	33.5	5.5
32	22	19.5	40	17	32	37	12	26 ⁰ _{-0.033}	13	7	4	60	—	75	45	6	8	68	37.5	5.5
40	24	21	52	22	41	47.3	14	32 ⁰ 0.039	16	7	5	66	36	82	50	8	10	76	46.5	7

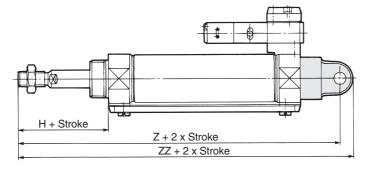
						Dimensi	ons	s by	Str	oke							Single Acti	ng/S	pring E	Extend
Bore size	мм	N	NA	NN	z	Bore Symbol	1 to	50	51 to	100	101 t	o 150	151 t	o 200	201 t	o 250	Bore size	нх	Q	QY
(mm)					-	(mm)	S	ZZ	S	ZZ	S	ZZ	S	ZZ	S	ZZ	(mm)		<u> </u>	Q1
20	M8 x 1.25	15	24	M20 x 1.5	37	20	87	141	112	166	137	191	—	—	—	_	20	65.3	19.8	14
25	M10 x 1.25	15	30	M26 x 1.5	41	25	87	145	112	170	137	195	—	—	—		25	70.5	22	14
32	M10 x 1.25	15	34.5	M26 x 1.5	41	32	89	147	114	172	139	197	164	222	—	—	32	76.5	25.8	16
40	M14 x 1.5	21.5	42.5	M32 x 2	45	40	113	179	138	204	163	229	188	254	213	279	40	84.5	29.8	16

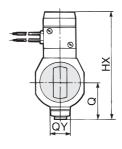
Head Side Flange Style (G)

Single acting, Spring return: CVM3G Bore size - Stroke S



Data


Series CVM3


Single Clevis Style (C)

Single acting, Spring return: CVM3C Bore size - Stroke S

Single acting, Spring extend: CVM3C Bore size - Stroke T

Bore size (mm)	Α	AL	B 1	CD	СХ	D	Eh₀	F	Н	H ₁	ΗХ	Ι	К	L	MM	Ν	NA	NN	RR	U
20	18	15.5	13	9	10	8	20 ⁰ -0.033	13	41	5	57.5	28	5	30	M8 x 1.25	15	24	M20 x 1.5	9	14
25	22	19.5	17	9	10	10	26 ⁰ -0.033	13	45	6	63.5	33.5	5.5	30	M10 x 1.25	15	30	M26 x 1.5	9	14
32	22	19.5	17	9	10	12	26 ⁰ -0.033	13	45	6	68	37.5	5.5	30	M10 x 1.25	15	34.5	M26 x 1.5	9	14
40	24	21	22	10	15	14	32 ⁰ -0.039	16	50	8	76	46.5	7	39	M14 x 1.5	21.5	42.5	M32 x 2	11	18

Dimensions by Stroke

Bore Skink		1 to 50)	5	1 to 10	00	10	1 to 1	50	15	1 to 2	00	20	1 to 2	50
Bore Symbol size (mm)	S	Z	ZZ	S	Z	ZZ	S	Z	ZZ	S	Z	ZZ	S	Z	ZZ
20	87	158	167	112	183	192	137	208	217	—	—	—	_	-	—
25	87	162	171	112	187	196	137	212	221	—	—	—	—	_	—
32	89	164	173	114	189	198	139	214	223	164	239	248	_	_	—
40	113	202	213	138	227	238	163	252	263	188	277	288	213	302	313

Single Acting/Spring Extend

	<u> </u>	1 0	
Bore size (mm)	нх	Q	QY
20	65.3	19.8	14
25	70.5	22	14
32	76.5	25.8	16
40	84.5	29.8	16

REA

REC

C 🗆 X

CUY

MQM

RHC

MK(2)

RSGQ

RS^H

RZQ

MIs

CEP1

CE1

CE2

ML2B

C_G^J5-S

CV

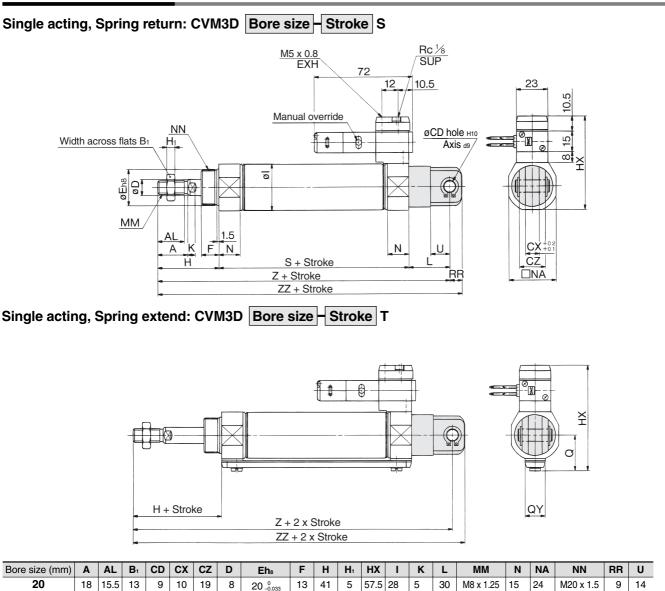
MVGQ

CC

RB

J

D-


-X

20-

Data

Valve Mounted Cylinder Single Acting, Single Rod, Spring Return/Extend Series CVM3

Double Clevis Style (D)

25	22	19.5	17	9	10	19	10	26 _0.033	13	45	6	63.5	33.5	5.5	30	M10 x 1.25	15	30
32	22	19.5	17	9	10	19	12	26 _0.033	13	45	6	68	37.5	5.5	30	M10 x 1.25	15	34.5
40	24	21	22	10	15	30	14	32 _{-0.039}	16	50	8	76	46.5	7	39	M14 x 1.5	21.5	42.5

Dimensions by Stroke

Bore Symp		1 to 50)	5	1 to 10	00	10	1 to 1	50	15	1 to 2	00	20	1 to 2	50
Bore Symbol size (mm)	S	Ζ	ZZ	S	Ζ	ZZ	S	Z	ZZ	s	Z	ZZ	S	Z	ZZ
20	87	158	167	112	183	192	137	208	217		—	—	—	—	—
25	87	162	171	112	187	196	137	212	221	—	—	—	—	—	—
32	89	164	173	114	189	198	139	214	223	164	239	248	—	—	—
40	113	202	213	138	227	238	163	252	263	188	277	288	213	302	313

Single Acting/Spring Extend

M26 x 1.5

M26 x 1.5

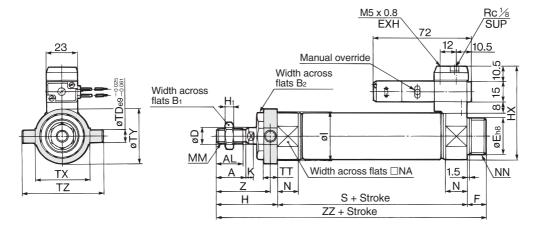
M32 x 2

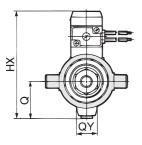
9 14

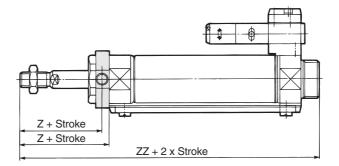
9 14

11 18

нх	Q	QY
65.3	19.8	14
70.5	22	14
76.5	25.8	16
84.5	29.8	16
	65.3 70.5 76.5	65.3 19.8 70.5 22 76.5 25.8


* Clevis pin and snap ring (cotter pin for ø40) is shipped together.


Series CVM3

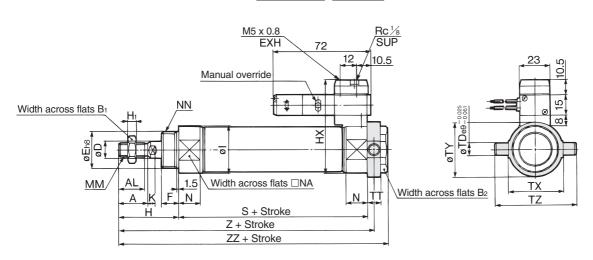

Rod Side Trunnion Style (U)

Single acting, Spring return: CVM3U Bore size - Stroke S

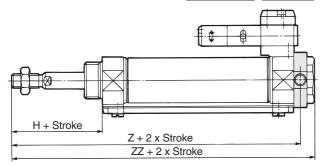
Single acting, Spring extend: CVM3U Bore size - Stroke T

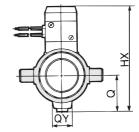
Bore size (mm)	Α	AL	B ₁	B ₂	D	Eh₅	F	н	H	ΗХ	I	κ	MM	Ν	NA	NN	TD	TT	ΤХ	ΤY	ΤZ	Z
20	18	15.5	13	26	8	20 _0.033	13	41	5	57.5	28	5	M8 x 1.25	15	24	M20 x 1.5	8	10	32	32	52	36
25	22	19.5	17	32	10	26 _{-0.033}	13	45	6	63.5	33.5	5.5	M10 x 1.25	15	30	M26 x 1.5	9	10	40	40	60	40
32	22	19.5	17	32	12	26 _0.033	13	45	6	68	37.5	5.5	M10 x 1.25	15	34.5	M26 x 1.5	9	10	40	40	60	40
40	24	21	22	41	14	32 _0.039	16	50	8	76	46.5	7	M14 x 1.5	21.5	42.5	M32 x 2	10	11	53	53	77	44.5

Dimensions by Stroke


Stroke Bore	1 to	50	51 to	100	101 t	o 150	151 t	o 200	201 to 250		
Bore Symbol (mm)	S	ZZ	S	ZZ	S	ZZ	S	ZZ	S	ZZ	
20	87	141	112	166	137	191	—	—	—	—	
25	87	145	112	170	137	195		—	—	—	
32	89	147	114	172	139	197	164	222	—	_	
40	113	179	138	204	163	229	188	254	213	279	

Single Acting/Spring Extend


	_		
Bore size	нх	Q	QY
20	65.3	19.8	14
25	70.5	22	14
32	76.5	25.8	16
40	84.5	29.8	16


Head Side Trunnion Style (T)

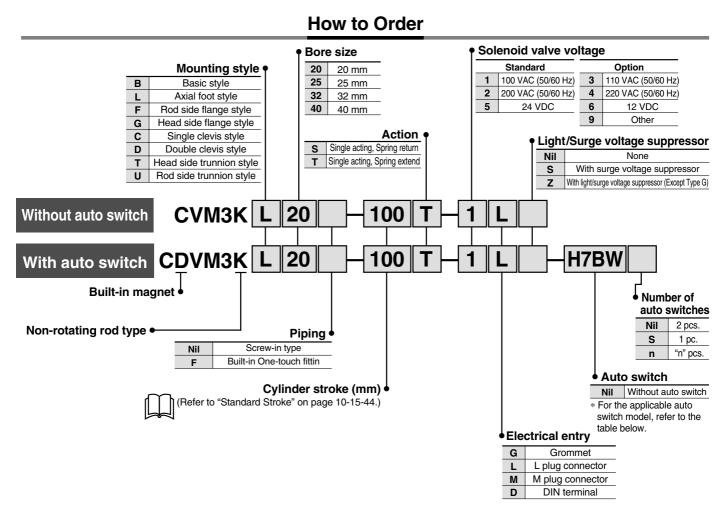
Single acting, Spring return: CVM3T Bore size - Stroke S

Single acting, Spring extend: CVM3T Bore size - Stroke T

Bore size (mm)	Α	AL	B 1	B ₂	D	Eh₃	F	н	H1	ΗХ	I	κ	MM	Ν	NA	NN	TD	тт	ΤХ	TΥ	TZ
20	18	15.5	13	26	8	20 _0_033	13	41	5	57.5	28	5	M8 x 1.25	15	24	M20 x 1.5	8	10	32	32	52
25	22	19.5	17	32	10	26 _0.033	13	45	6	63.5	33.5	5.5	M10 x 1.25	15	30	M26 x 1.5	9	10	40	40	60
32	22	19.5	17	32	12	26 _0.033	13	45	6	68	37.5	5.5	M10 x 1.25	15	34.5	M26 x 1.5	9	10	40	40	60
40	24	21	22	41	14	32 _0.039	16	50	8	76	46.5	7	M14 x 1.5	21.5	42.5	M32 x 2	10	11	53	53	77

Dimensions by Stroke

Stroke Bore		1 to 50			51 to 100			101 to 150			i1 to 2	00	201 to 250		
Bore Symbol (mm)	S	Z	ZZ	S	Z	ZZ	s	Ζ	ZZ	S	Ζ	ZZ	S	Ζ	ZZ
20	87	133	143	112	158	168	137	183	193	—	—	_	—	-	_
25	87	137	147	112	162	172	137	187	197	—	_	_	—		—
32	89	139	149	114	164	174	139	189	199	164	214	224	—	—	_
40	113	168.5	179	138	193.5	204	163	218.5	229	188	243.5	254	213	268.5	279


Single Acting/Spring Extend

	vullig/	opinig	Externa
Bore size (mm)	нх	Q	QY
20	65.3	19.8	14
25	70.5	22	14
32	76.5	25.8	16
40	84.5	29.8	16

REC C□X C□Y MQ ^A RHC MK(2) RS ^A RZQ MI ^S CEP1 CEP1 CEP1 CE2 ML2B C ^I ₃ 5-S CV MVGQ CC RB J D- -X 20- Data	
C□Y MQ ^A RHC MK(2) RS ^A RS ^A RZQ MI ^S CEP1 CE1 CE1 CE1 CE2 ML2B C ² ₆ 5-S CV MVGQ CC RB J J D- -X 20-	REC
MQ M RHC MK(2) RS G RS L RZQ MI S CEP1 CEP1 CE2 ML2B C ¹ / ₆ 5-S CV MVGQ CC RB J D- -X	C□X
RHC MK(2) RS % RZQ MI % CEP1 CE2 ML2B C%5-S CV MVGQ CC RB J D- -X 20-	C□Y
RHC MK(2) RS % RZQ MI % CEP1 CE2 ML2B C%5-S CV MVGQ CC RB J D- -X 20-	MQM
RS ^G _G RZQ MI ^W _S CEP1 CE2 ML2B C ¹ ₆ 5-S CV MVGQ CC RB J D- -X 20-	RHC
RS # RZQ MI % CEP1 CE1 CE2 ML2B C%5-S CV MVGQ CC RB J D- -X 20-	MK(2)
RZQ MI % CEP1 CE2 ML2B C ¹ / ₆ 5-S CV MVGQ CC RB J D- -X 20-	RSGQ
MI § CEP1 CE2 ML2B C ² 5-S CV MVGQ CC RB J D- C -X 20-	RS [⊬]
CEP1 CE1 CE2 ML2B C ² 5-S CV MVGQ CC RB J J D- -X 20-	RZQ
CE1 CE2 ML2B C ² 5-S CV MVGQ CC RB J D- -X 20-	MI s
CE2 ML2B C ² 5-S CV MVGQ CC RB J D- -X 20-	CEP1
ML2B C ¹ / ₆ 5-S CV MVGQ CC RB J D- -X 20-	CE1
C ¹ / ₆ 5-S CV MVGQ CC RB J D- -X 20-	CE2
CV MVGQ CC RB J D- -X 20-	ML2B
MVGQ CC RB J D- -X 20-	C ^J _G 5-S
CC RB J D- -X 20-	CV
RB J D- -X 20-	MVGQ
J D- -X 20-	CC
-X 20-	RB
-X 20-	J
	D-
	-X
Data	20-
L	Data

RE^AB

Valve Mounted Cylinder: Non-rotating Rod Type Single Acting, Single Rod, Spring Return/Extend **Series CVN3K**

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

			light	Wiring		Load volta	age		Lead v	vire le	ngth	(m) *			
Туре	Special function	Electrical entry	Indicator light	(Output)	DC		AC	Auto switch model	0.5 (Nil)	3 (L)	5 (Z)	None (N)	Pre-wire connector	Applical	ble load
tch		Crommet		3-wire (NPN equivalent)	—	5 V	—	C76	•	•	—	_	_	IC circuit	-
Reed switch	_	Grommet	S				100 V	C73				—	—		
De la			Yes	2-wire	24 V	12 V	100 V, 200 V	B54			\bullet	—	_		Relay,
Be		Connector		2-wile	24 V		—	C73C] —	PLC
	Diagnostic indication (2-color indication)	Grommet				_	—	B59W			—	—	—		
				3-wire (NPN)		EV 10 V		H7A1			0	_	0		
ch		Grommet		3-wire (PNP)		5 V, 12 V		H7A2			0	-	0	IC circuit	
switch	_			Quality		10.1/		H7B			0	_	0		
tes		Connector	8	2-wire	04.14	12 V		H7C			۲		_] —	Relay
Solid state	Diagnastis indiastics		≻	3-wire (NPN)	24 V	EV 10 V		H7NW			0	—	0	0	PLC
lid	Diagnostic indication (2-color indication)	Cromerce		3-wire (PNP)		5 V, 12 V		H7PW			0	—	0	IC circuit	
So		Grommet		2-wire		12 V		H7BW			0	—	0	—	1
	With diagnostic output (2-color indication)			4-wire (NPN)		5 V, 12 V		H7NF			0	—	0	IC circuit	
Lead	I wire length symb	3 5	m m	······ L (Èx ······ Z (Ex	ample) (ample) (ample) (C73CL C73CZ	*	Solid state switches marked	d with '	'O" a	are p	orodu	ced upon r	receipt c	of order

None ······· N (Example) C73CZ

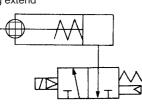
• Since there are other applicable auto switches than listed, refer to Best Pneumatics Vol. 6 for details.

• For details about auto switches with pre-wire connector, refer to page 10-20-66.

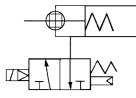
Valve Mounted Cylinder: Non-rotating Rod Type Single Acting, Single Rod, Spring Return/Extend Series CVM3K

A hexagon shaped rod that does not rotate.

Non-rotating accuracy ø20, ø25 — ±0.7° ø32, ø40 — ±0.5°


Can operate without lubrication.

Auto switches can also be mounted.


Can be installed with auto switches to facilitate the detection of the cylinder's stroke position.

JIS Symbol Spring extend

Spring return

Made to Order	Made to Order Specifications (For details, refer to page 10-21-1.)
Symbol	Specifications

-XA□	Change of rod end shape

	bore size (n	nm)	20	25	32	40		
Rod non-rotating ac	curacy		±0.	.7°	±C).5°		
Туре			<u> </u>	Non	n-lube			
Action			Single a	cting, Spring	g return/Spring	g extend		
Fluid				A	Air			
Cushion				Rubber	r bumper			
Proof pressure					MPa		ne /	
Maximum operating			<u> </u>	-	MPa			
Minimum operating	•			pring return		pring extend	REC	
Ambient and fluid ter	mperature				(No freezing)	,	••	
Lubrication			<u> </u>	•	d (Non-lube)		CDX	
Thread tolerance			<u> </u>	+	lass 2		「 <u>~</u> ¬\	
Stroke length tolerar					0		C□Y	
Effective area of val	Screw-in ty	,			n² (0.25)		MQM	
Piping -		ype ie-touch fitting	<u> </u>		: 1/8 6/I.D.: ø4			
Manual override	Built-in C.	e-touch humg			6/I.D.: Ø4 g (Standard)		RHC	
Piston speed (mm/s	-)		50 to 700	50 to 650	g (Standard) 50 to 590	50 to 420		
)				tyle, Rod side		MK(2)	
Mounting			Head sid	de flange styl	/le, Single cle	evis style,	RSG	
Wiedenieg			Double ca		lead side trun runnion style		hυ _G	
Ilowable Kinet	tio Ener		1				RS ^H	
		20	25	32		(J) 40		
Bore size (mm)							RZQ	
Allowable kinetic ene	ergy	0.27	0.4	0.6	<u>ک</u> 5	1.2	MIs	
olenoid Valve	Snecifi	cations					CEP1	
Applicable solenoid va	-		VZ319					
	IVe mode.	Sta	VZ319 Standard: 100/200 VAC (50/60 Hz), 24 VDC					
Coil rated voltage		3ια		00 VAC (50/6 10/220 VAC,		C	CE1	
Allowable voltage			•	% of the rated	-		CE2	
Coil insulation				or equivalent	Ū			
Electrical entry		Grommet,	L plug connec			N terminal	ML2E	
Power Note) onsumption (W)	C			n indicator lig				
pparent power AC	Inrush		4.5/5	50 Hz, 4.2/60	Hz		C _g ¹ 5-8	
VA) AC	Holding		3.5/5	50 Hz, 3.0/60	Hz		CV	
ote) At the rated volta	•						0	
tandard Stroke	e						MVGQ	
Bore size (mm)			Standard str	roke (mm) ^{No}	ote)			
20		,	50, 75, 100, 1		CC			
		25,	50, 75, 100, 1				RB	
25				DE 150 000	.) *			
32			50, 75, 100, 1					
	-lie ethor	25,	50, 75, 100, 1	125, 150, 200	0, 250 *		J	

Mounting Bracket Part No.

								0						
Bore size (mm)	20	25	32	40	Auto switch		Auto switch Bore size (mm)							
Axial foot*	CM-L020B	CM-L	_032B	CM-L040B		model	20	25	32	40				
Flange	CM-F020B	CM-F	-032B	CM-F040B		D-C7□/C80	BM0.000		DM0.000	DM0.040				
Single clevis	CM-C020B	CM-C	C032B	CM-C040B		D-H7 □	BM2-020	BM2-025	BM2-032	BM2-040				
Double clevis**	CM-D020B	CM-E	0032B	CM-D040B		D-B5□/B64	DAO 000	BA2-025	BA2-032	DA0.040				
Trunnion (With nut)	CM-T020B	CM-T	T032B	CM-T040B		D-G5NTL	BA2-020	BA2-025	BA2-032	BA2-040				

* Two foot brackets and a mounting nut are attached.

When ordering the foot bracket., order 2 pcs per cylinder.

** Clevis pin and snap ring (cotter pin for ø40) are packaged together.

Theoretical Output

Spring Reaction Force

Refer to "Theoretical Output 1" on page 10-23-1. Refer to "Spring Reaction Force" on page 10-23-1. -X

20-

Data

Series CVM3K

Mounting Bracket and Accessory

Accessory	Sta	ndard equipm	ent	Op	tion
Mounting	Mounting nut	Rod end nut	Clevis pin	Single knuckle joint	Double knuckle joint
Basic style	• (1 pc.)	•	_	•	•
Axial foot style	• (2)	•	_	•	•
Rod side flange style	• (1)	•	_	•	•
Head side flange style	• (1)	•	_	•	•
Single clevis style	(1)	•	_	•	•
Double clevis style (3)	(1)	•	•	•	•
Head side trunnion style	• (1) ⁽²⁾	•	—	•	•
Rod side trunnion style	• (1) ⁽²⁾	•	_	•	•
Note 1) Maximum mut is not as	م والجنبين أم م مرمينين	بلام مامينام ملا	ملطن بملم أمضم مأر	مايينه ملياه	

Note 1) Mounting nut is not equipped with single clevis style and double clevis style.

Note 2) Trunnion nuts are equipped for head side trunnion and rod side trunnion.

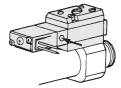
Note 3) Pin and set ring are shipped together with double clevis and double knuckle joint.

Weight

Spring Return/(): Denotes Spring Extend. (kg) 40 Bore size (mm) 20 32 25 0.30 (0.30) 0.40 (0.04) 0.52 (0.51) 0.87 (0.86) 25 stroke 0.32 (0.32) 0.43 (0.43) 0.56 (0.56) 0.94 (0.93) 50 stroke 0.37 (0.37) 0.52 (0.51) 0.68 (0.66) 1.13 (1.09) 75 stroke 100 stroke 0.39 (0.39) 0.55 (0.54) 0.73 (0.70) 1.19 (1.16) Basic weight 0.45 (0.44) 0.64 (0.61) 0.86 (0.82) 1.39 (1.33) 125 stroke 0.47 (0.46) 0.67 (0.64) 150 stroke 0.90 (0.86) 1.46 (1.40) — (—) — (—) 1.07 (1.02) 1.71 (1.63) 200 stroke — (—) — (—) — (—) 1.97 (1.85) 250 stroke 0.15 (0.15) 0.16 (0.16) 0.16 (0.16) 0.27 (0.27) Axial foot 0.06 (0.06) 0.09 (0.09) 0.09 (0.09) 0.12 (0.12) Flange Mounting bracket Single clevis 0.04 (0.04) 0.04 (0.04) 0.04 (0.04) 0.09 (0.09) Weight 0.05 (0.05) 0.06 (0.06) 0.06 (0.06) 0.13 (0.13) Double clevis Trunnion 0.04 (0.04) 0.07 (0.07) 0.07 (0.07) 0.10 (0.10) Option Single knuckle joint 0.06 (0.06) 0.06 (0.06) 0.06 (0.06) 0.23 (0.23) bracket 0.07 (0.07) 0.07 (0.07) 0.07 (0.07) 0.20 (0.02) Double knuckle (With pin) weight

Calculation: (Example) CVM3KL32-100-1G (ø32, 100 stroke, Spring return)

 Basic weight 0.73 (kg) Weight of brackets 0.16 (kg)


0.73 + 0.16 = 0.89 kg

Minimum Stroke for Auto Switch Mounting

	No IOI Auto		loaning		(1111)
		No. of	auto switches me	ounted	
Auto switch model	2	2	r	ו	
model	Different sides	Same side	Different sides	Same side	1
D-C7□/C80	15	50	15 . 45 (ⁿ⁻²)	50 + 45 (n – 2)	10
D-H7□/H7⊡W D-H7NF	15		(n = 2, 4, 6)		10
D-C73C/C80C D-H7C	15	65	$15 + 50 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	65 + 50 (n – 2)	10
D-B5⊡ D-B64 D-G5NTL	15	75	$15 + 50 \left(\frac{n-2}{2}\right)$ (n = 2, 4, 6)	75 . 55 (*** 0)	10
D-B59W	20	75	$(n = 2, 4, 6\cdots)$ 20 + 50 $\left(\frac{n-2}{2}\right)$ $(n = 2, 4, 6\cdots)$	75 + 55 (n – 2)	15

Manual Operation

Manual operation is possible by pushing the manual button indicated with the arrow.

APrecautions

Be sure to read before handling. For Safety Instructions and Actuator Precautions, refer to pages 10-24-3 to 10-24-6.

Operating Precautions

A Caution

Avoid using the air cylinder in such a way 1. that rotational torque would be applied to the piston rod.

If rotational torque is applied, the non-rotating guide will deform, causing a loss of nonrotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sure to retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.

Allowable rotational torque	ø20	ø25	ø32	ø40
(N·m or less)	0.2	0.25	0.25	0.44
		Ì		[/

Disassembly/Replacement 🗥 Caution

1. When replacing rod seals, please contact SMC.

Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.

(mm)

RE^A_B

REC

C□X

C□Y

MQM

RHC

MK(2)

RSGQ

RS^H

RZQ

MIs

CEP1

CE1

CE2

ML2B

C_G^J5-S

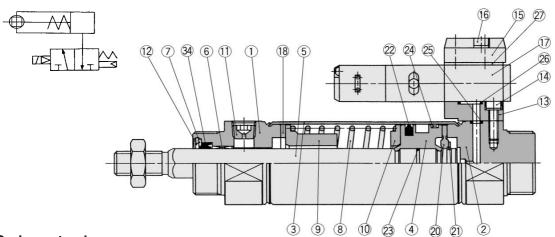
CV

MVGQ

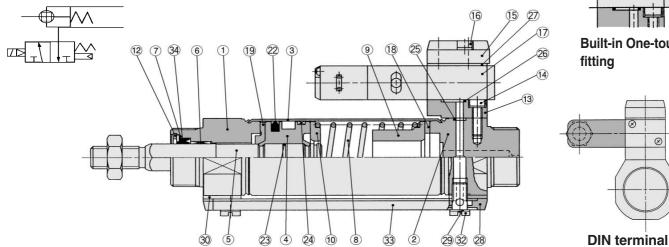
CC

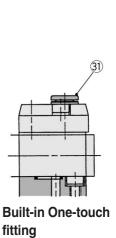
RB

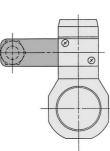
J


D-

-X


Valve Mounted Cylinder: Non-rotating Rod Type Single Acting, Single Rod, Spring Return/Extend Series CVM3K


Construction


Spring return

Spring extend

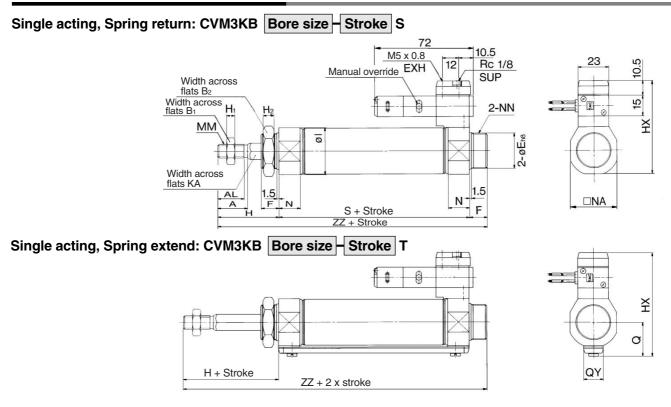
Component Parts

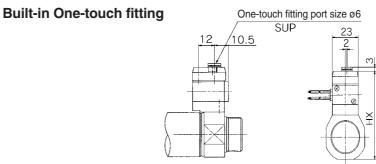
No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Clear anodized
2	Head cover	Aluminum alloy	Clear anodized
3	Cylinder tube	Stainless steel	
4	Piston	Aluminum alloy	Chromated
(5)	Piston rod	Carbon steel	Hard chrome plated
6	Non-rotating guide	Stainless steel	
\bigcirc	Seal retainer	Rolled steel	Nickel plated
8	Return spring	Steel wire	Zinc chromated
9	Spring guide	Aluminum alloy	Chromated
10	Spring seat	Aluminum alloy	Chromated
1	Plug with fixed orifice	Alloy steel	Black zinc chromated
(12)	Snap ring	Carbon tool steel	Nickel plated
13	Sub-plate	Aluminum alloy	Metallic painted
14)	Hex. socket head cap screw with spring washer	Stainless steel	M3 x 10ℓ
(15)	Plate	Aluminum alloy	Metallic painted
16	Hex. socket head cap screw with spring washer	Stainless steel	M3 x 28ℓ
17	Solenoid valve	_	Refer to the below.*
(18)	Bumper	Urethane	
(19)	Bumper A	Urethane	

No.	Description	Material	Note
20	Bumper B	Urethane	
21)	Snap ring	Stainless steel	
22	Piston seal	NBR	
23	Piston gasket	NBR	
24	Wear ring	Resin	
25	Head cover gasket	NBR	
26	Sub-plate gasket	NBR	
27	Gasket	NBR	
28	Pipe gasket	Urethane rubber	
29	Gasket	Resin	
30	Spacer gasket	Resin	
31	One-touch fitting	—	Port size: ø6
32	Stud	Brass	Electroless nickel plated
33	Pipe	Aluminum alloy	Clear anodized
	•	, ,	I

Replacement Parts

Replacement Parts										
No.	Description	Material		Part	t no.			_		
INO.	Description	material	20	25	32	40	Data	1		
34)	Rod seal	NBR	PDR-8W	PDR-10W	PDR-12W	PDR-14W				


* How to order solenoid valves

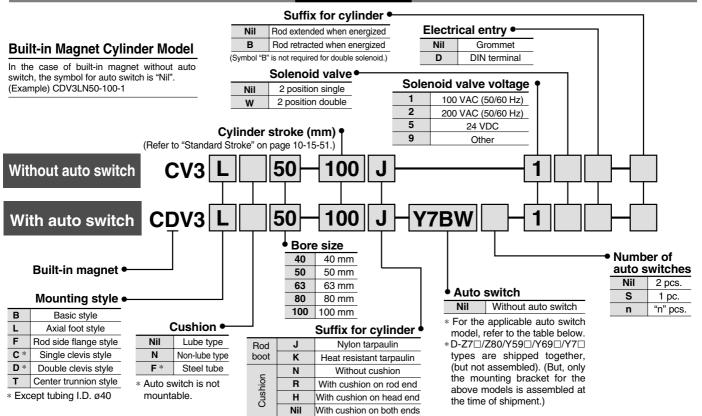

VZ319-Voltage Electrical entry

Series CVM3K

Basic Style (B): External Dimensions

Bore size (mm)	Α	AL	B 1	B ₂	Eh₅	F	н	H1	H ₂	ΗХ	I	KA	MM	Ν	NA	NN
20	18	15.5	13	26	200.033	13	41	5	8	57.5	28	8.2	M8 x 1.25	15	24	M20 x 1.5
25	22	19.5	17	32	26 ⁰ _{-0.033}	13	45	6	8	63.5	33.5	10.2	M10 x 1.25	15	30	M26 x 1.5
32	22	19.5	17	32	26 _{-0.033}	13	45	6	8	68	37.5	12.2	M10 x 1.25	15	34.5	M26 x 1.5
40	24	21	22	41	32 _0.039	16	50	8	10	76	46.5	14.2	M14 x 1.5	21.5	42.5	M32 x 2

Dimensions by Stroke


Stroke Bore	1 to 50		51 to	0 100	101 t	o 150	151 t	o 200	201 to 250		
Bore Symbol (mm)	S	ZZ	S	ZZ	S	ZZ	S	ZZ	S	ZZ	
20	87	141	112	166	137	191	—	_	—		
25	87	145	112	170	137	195	—		—	—	
32	89	147	114	172	139	197	164	222	—	—	
40	113	179	138	204	163	229	188	254	213	279	

Single Acting/Spring Extend

Bore size (mm)	нх	Q	QY
20	65.3	19.8	14
25	70.5	22	14
32	76.5	25.8	16
40	84.5	29.8	16

Valve Mounted Cylinder Double Acting, Single Rod Series CV3 Lube/Non-lube Type: ø40, ø50, ø63, ø80, ø100

How to Order

* When specifying symbol more than one, combine symbols in alphabetically.

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

			light			Load volt	age	Auto swit	ch model	Lead wire le	ngth (i	m) *				
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)		DC		Tie-rod mounting	Band mounting	0.5 (Nil)	3 (L)	5 (Z)	Pre-wire connector	Applicable load		
				3-wire (NPN equivalent)	-	5 V	_	Z76	—	•	•	-		IC circuit	_	
tch		Grommet					100 V	Z73	_	•		٠	_		Relay, PLC	
Reed switch							—	—	B53***	•	•				PLC	
be be	_		Yes			12 V	100 V, 200 V	A54	B54***	•	•		_]	Relay, PLC	
Be		Terminal	1	2-wire	24 V	12 V	—	A33C	A33	_	-	—		1	PLC	
_		conduit					100 V	A34C	A34		—	—	_	1 —		
		DIN terminal					200 V	A44C	A44		-	—	_		Relay, PLC	
	Diagnostic indication (2-color indication)	Grommet	1			_	—	A59W	B59W***	•		—	_	1	-	
				3-wire (NPN)	04.14	5 V,12 V		Y59A	G59 ***	•		0	0	10		
		Grommet		3-wire (PNP)	24 V	5 V,12 V	_	Y7P	G5P ***	•			IC circuit			
с		Cionnet		0 mine	—	_	100 V, 200 V	J51	_	•		0	_			
wit	_			2-wire		12 V		Y59B	K59***	•	•	0	0	1 —		
state switch		Terminal	Yes	3-wire (NPN)		5 V, 12 V		G39C	G39	_	-	—	_	IC circuit		
stat		conduit	⊬	2-wire	24 V	12 V	_	K39C	K39		-	—	_	_	Relay, PLC	
Solid	D :			3-wire (NPN)	1	5 V		Y7NW	G59W***	•		0	0	10 · · ·	1	
So	U U	iagnostic indication		3-wire (PNP)	1	12 V		Y7PW	G5PW***			0	0	IC circuit		
	(2-color indication)	Grommet		2-wire	1	12 V		Y7BW	K59W***	•	•	0	0	_		
	With diagnostic output (2-color indication)	1		4-wire (NPN)	1	5 V, 12 V		F59F	G59F****			0	0	IC circuit	1	

3 m ······· L (Example) A54L 5 m ······ Z (Example) A54Z * Solid state switches marked with "O" are produced upon receipt of order. ** D-G55DW/K59W/G59F cannot be mounted on bore sizes ø40 and

• Since there are other applicable auto switches than listed, refer to page 10-15-61 for details.

For details about auto switches with pre-wire connector, refer to page 10-20-66.

ø50 lube style cylinder. *** D-B5 $W/G5\Box/K5\Box$ types are mountable only upon a receipt of

order. (Not mountable after the time of shipment)

Valve Mounted Cylinder Double Acting, Single Rod Series CV3

Adjustable speed.

Built-in throttle valves are provided to enable speed adjustments in each direction.

Operation type can be changed to rod extended when energized or rod retracted when energized.

Ease of maintenance and inspection.

The solenoid valve can be separated easily and the cylinder can also be disassembled.

A manual operation mechanism is provided as standard equipment (non-locking).

An auto switch cylinder with the switch installed can also be manufactured.

JIS Symbol

Made to Order	Made to Order Specifications (For details, refer to page 10-21-1.)
Symbol	Specifications
-XA□	Change of rod end shape
-XC4	With heavy duty scraper

-XC6	Piston rod and rod end nut made of stainless steel			
-XC7	Tie-rod, cushion valve, and tie-rod nut			
-707	and similar parts made of stainless steel			
-XC15	Change of tie-rod length			
-XC22	Fluoro rubber seals			
-XC29	-XC29 Double knuckle joint with spring pin			
	·			

Precautions

Minimum stroke for auto switch **I** mounting

▲ Caution

1. Each switch and mounting style of cylinder has different minimum mountable stroke. Be careful especially of the center trunnion style. (For details, refer to page 10-15-62.)

Specifications

Applicable bore	size (mr	40, 50, 63, 80, 100						
Туре			l	_ube		Non-I	ube	
Series				CV3		CV3	⊐N	
Action				Double acting				
Fluid					Air			
Proof pressure					.35 M			
Maximum opera			0.9 MPa					
Minimum operat	• ·				.15 M			RE
Ambient & fluid	tempera	ture				o freezing)		RE
Cushion					r cush			
Thread toleranc				-	S Clas	-		C
Stroke length to			I	•		251 to 1000 st	• -1.4 • 0	
Effective area of	f valve (Cv factor)		18	mm² (
Port size					Rc 1/4			
Electrical entry					-	I terminal		MG
Piston speed			ø40 to ø80: 50 to 500 mm/s*, ø100: 50 to 350 mm/s*					
Mounting			Basic style, Axial foot style, Rod side flange style Single clevis style, Double clevis style, Center trunnion style				Rŀ	
Operate within the	e range o	f absorbed	enerav.	-				MK
llowable Ki			55					
Bore size (m		40	50	63	3	80	100	RS
Allowable kinetic	,	2.4 J						
olenoid Val			4.4	J 7.8	J	11.7 J	20.5 J	RS
	ve Sp	ecificati		J 7.8	J	11.7 J	20.5 J	-
Applicable soler	· ·				J V3⊡0		20.5 J	RZ
	noid valv		ons		V3□0			RZ
Applicable soler	noid valv ge		ons	00/200 VAC	V3⊡0 ; (50/6	8	C	RZ
Applicable soler Coil rated voltage	noid valv ge		ons	00/200 VAC -15 to 10%	V3⊡0 (50/6 of the	8 0 Hz), 24 VD	C	RZ
Applicable soler Coil rated voltag Allowable voltag	noid valv ge		ons 1	00/200 VAC -15 to 10%	V3⊡0 (50/6 of the	8 0 Hz), 24 VD rated voltage	C	RZ MI CE
Applicable soler Coil rated voltage Allowable voltage Coil insulation	noid valv ge ge	re model	ons	00/200 VAC -15 to 10% Class B or	V3⊡0 (50/6 of the	8 0 Hz), 24 VD rated voltage alent (130°C)		RZ MI CE CI
Applicable soler Coil rated voltag Allowable voltag	noid valv ge ge		ons 1	00/200 VAC -15 to 10% Class B or 50 Hz	V3⊡0 (50/6 of the	8 0 Hz), 24 VD rated voltage alent (130°C) 8.5 V4		RZ MI CE CE
Applicable soler Coil rated voltage Allowable voltage Coil insulation	noid valv ge ge	re model	ons 1	00/200 VAC -15 to 10% Class B or 50 Hz 60 Hz	V3⊡0 (50/6 of the	8 0 Hz), 24 VD rated voltage alent (130°C) 8.5 VA 7.5 VA	C	RZ MI CE CE
Applicable soler Coil rated voltage Allowable voltage Coil insulation	noid valv ge ge Note)	re model	ons 1	00/200 VAC -15 to 10% Class B or 50 Hz 60 Hz 50 Hz	V3⊡0 (50/6 of the	8 0 Hz), 24 VD rated voltage alent (130°C) 8.5 VA 7.5 VA 7.0 VA	C	RZ MI CE CE
Applicable soler Coil rated voltage Allowable voltage Coil insulation Apparent power	noid valv ge note) n Note)	AC	ons 1	00/200 VAC -15 to 10% Class B or 50 Hz 60 Hz 50 Hz	V3□0 : (50/6 of the equiva	8 0 Hz), 24 VD rated voltage alent (130°C) 8.5 VA 7.5 VA 7.0 VA	C	RZ MI CE CE CE
Applicable soler Coil rated voltage Allowable voltage Coil insulation Apparent power Power consumption	noid valv ge Note) n ^{Note)}	AC	ons 1	00/200 VAC -15 to 10% Class B or 50 Hz 60 Hz 50 Hz	V3□0 : (50/6 of the equiva	8 0 Hz), 24 VD rated voltage alent (130°C) 8.5 VA 7.5 VA 7.0 VA	C	RS RZ MI CE CE CE CE CE
Applicable soler Coil rated voltag Allowable voltag Coil insulation Apparent power Power consumption ote) At the rated vo	noid valv ge Note) n ^{Note)}	AC	ons 1 Inrush Holding	00/200 VAC -15 to 10% Class B or 50 Hz 60 Hz 50 Hz	V3□0 (50/6 of the equiva 6 W	8 0 Hz), 24 VD rated voltage alent (130°C) 8.5 VA 7.5 VA 7.0 VA	C	RZ MI CE CE CE

Sore size (mm)	Standard stroke (mm)
40	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500
50 , 63	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600
80, 100	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700

Note) The cylinders with the standard strokes indicated above can be delivered in a short term. Intermediate stroke except mentioned above is manufactured upon receipt of order. When the auto switch is attached, the minimum stroke is going to be different. Refer to page 10-15-62. The minimum stroke length is different in the trunnion style. For further information, refer to page 10-15-62.

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature
J	Nylon tarpaulin	70°C
к	Heat resistant tarpaulin	110°C*

* Maximum ambient temperature for the rod boot itself.

Accessory

Mounting		Basic style	Foot style	Rod side flange style	Single clevis style	Double* clevis style	Center trunnion style
Standard	Rod end nut	•	•	•	•	•	•
equipment	Clevis pin			-	_	•	_
	Single knuckle joint	•	•	•	•	•	•
Option	Double knuckle joint * (with pin)	•	•	•	•	•	•
	With rod boot	•	•	•	•	•	•

* Pin, plain washer and cotter pin are packaged together with double clevis and double knuckle joint.

MVGQ

CC

RB

J

D-

-X

20-

Data

Series CV3

Weight						(kg)
	Bore size (mm)	40	50	63	80	100
	Basic style	1.30 (1.35)	1.73 (1.77)	2.57 (2.61)	4.29 (4.44)	6.01 (6.21)
	Axial foot style	1.47 (1.52)	1.93 (1.97)	2.86 (2.9)	5.08 (5.23)	6.94 (7.14)
Basic	Rod side flange style	1.56 (1.61)	2.14 (2.18)	3.19 (3.23)	5.39 (5.54)	7.40 (7.6)
weight	Single clevis style	_	2.46 (2.5)	3.68 (3.72)	6.23 (6.38)	8.66 (8.86)
	Double clevis style	—	2.51 (2.55)	3.73 (3.77)	6.29 (6.44)	8.73 (8.93)
	Trunnion style	1.95 (2.05)	2.52 (3.52)	3.96 (4.16)	6.67 (6.96)	9.58 (9.97)
Additional	All mounting brackets (Except trunnion)	0.22 (0.28)	0.28 (0.35)	0.37 (0.43)	0.52 (0.70)	0.65 (0.87)
weight per each 50 mm of stroke	Trunnion style of steel	(0.36)	(0.46)	(0.65)	(0.86)	(1.07)
Accessory	Single knuckle	0.23	0.26	0.26	0.60	0.83
bracket	Double knuckle (with pin)	0.37	0.43	0.43	0.87	1.27
Calculation: (Example) CV3L40-100-1				*(): Ste	el tube type.

Calculation: (Example) CV3L40-100-1

Basic weight......1.47 (kg)
Additional weight.....0.22 (kg/50 st)
Cylinder stroke.....100 (st) 1.47 + 0.22 x 100 ÷ 50 = 1.9 kg

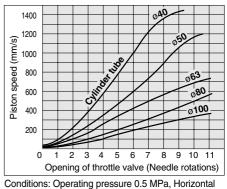
Mounting Bracket Part No.

Mounting Bracket Part No.

Bore size (mm)	40	50	63	80	100
Axial foot *	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
Single clevis	—	CV3-C05	CV3-C06	CV3-C08	CV3-C10
Double clevis **	—	CV3-D05	CV3-D06	CV3-D08	CV3-D10

* Order two foot brackets per cylinder.

** For double clevis style, pin for clevis, plain washer and split pin are shipped together.


Auto Switch Mounting Bracket Part No.

Auto switch model	Bore size (mm)				
Auto switch model	40	50	63	80	100
D-A5□/A6□/A59W/F5□/J5□ D-F5□W/J59W/F5NTL/F59F	BT-04	BT-04	BT-06	BT-08	BT-08
D-A3□/A44/G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M
D-B5□/B64/B59W/G5□/K59 D-G5□W/K59W/G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10
D-A3 C/A44C/G39C/K39C*	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100
D-Z7□/Z80/Y59□/Y69□/Y7P D-Y7PV/Y7□W/Y7□WV	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080

* Mounting brackets are provided with D-A3 C/A44C/G39C/K39C. When ordering, indicate as described below, in accordance with the cylinder size.

Ex.) ø40 ······D-A3□C-4	ø80 ······D-A3□C-8
ø50 ······D-A3□C-5	ø 100 ······D-A3□C-10
ø63 ······D-A3□C-6	

Opening Range of Throttle Valve and Driving Speed

mounting, No load, Spring return side

• Driving speeds indicated above are for reference.

Mounting of Auto Switch

D-B5, B64, G5, D-K5 types are mountable only upon a receipt of order. (Not mountable after the time of shipment)

REA

REC

A Precautions

Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions.

Precautions

Warning

1. Do not loosen the cushion valve more than 2 turns from the fully closed state.

Do not loosen it more than 2 turns because this could cause the cushion valve to be ejected.

A Caution

- 1. Do not use an air cylinder as an air-hydro cylinder, because this could result in oil leakage.
- 2. Do not twist the rod boot during installation. If the cylinder is installed with its bellows twisted, it could damage the bellows.
- 3. Use a socket wrench when replacing mounting brackets.

The use of other tools could cause parts such as nuts to become deformed or affect their ease of service. For the sockets to be used, refer to the table below.

Bore size (mm)	Nut	Width across flats	Socket
40 , 50	JIS B 1181 Class 3 Intermediate M8 x 1.25	13	JIS B 4636 + 2 point angle socket 13
63	JIS B 1181 Class 3 Intermediate M10 x 1.25	17	JIS B 4636 + 2 point angle socket 17
80, 100	JIS B 1181 Class 3 Intermediate M12 x 1.75	19	JIS B 4636 + 2 point angle socket 19

- **4. Do not replace the bushings or the cushion seals.** The bushings and the cushion seals are press-fitted. To replace
 - them, they must be replaced together as a cover assembly.
- 5. To replace a seal, apply grease to the new seal before installing it.

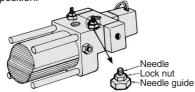
If the cylinder is put into operation without applying grease to the seal, it could cause the seal to wear significantly, leading to premature air leakage.

6. Do not disassemble a trunnion style cylinder.

It is extremely difficult to align the axial center of the trunnion with the axial center of the cylinder. Thus, if this style of cylinder is disassembled and reassembled, there is the likelihood that the required dimensional accuracy cannot be attained, which could lead to a malfunction.

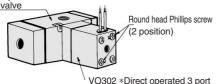
7. Operate the cylinder at a drive speed within the range of 50 and 500 mm/s.

(Operate within the range of absorbed energy. Refer to page.) "Air Cylinders/Model Selection" in Best Pneumaties Vol. 6/7.


C C MQM RHC MK(2) RSG RS^H RZQ MIs CEP1 CE1 CE2 ML2B C^J_c5-S CV MVGQ CC RB J D--Х 20-Data

Series CV3

Piston Speed Adjustment


- 1. To slow down the piston speed, screw in the needle of the silencer exhaust throttle valve clockwise, to reduce the amount of air that is discharged.
- 2. The throttle valve needle opens fully when it is loosened 11 turns from its fully closed position.

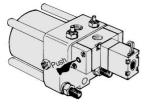
3. After the specified speed has been set, secure the needle with the lock nut.

Change of Voltage Specifications

5 port switch valve

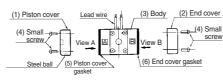
VO302 *Direct operated 3 por solenoid switch valve

<Step>


- 1. Loosen the Phillips screw with a screwdriver.
- Detach the VO302* direct operated 3 port solenoid valve switch* from the 5 port solenoid valve (V3108, V3208) and replace it.

How to order pilot valve:

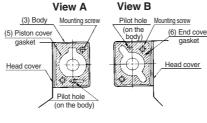
- 1. For single solenoid valve 1-1. Pilot valve only
 - 1-1. Pilot valve only VO302A-00** 1 pc.
 - 1-2. With gasket
 - VO302S-00** 1 pc.
- 2. For double solenoid valve
- 2-1. Pilot valve only
 - VO302A-00** 2 pcs.
- 2-2. With gasket
- VO302D-00** 2 pcs.

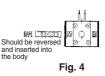

Manual Operation

Manual operation (non-locking) is possible by pushing the manual button about 3 mm.

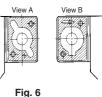
Changing between Rod Extended when Energized and Rod Retracted when Energized

Ex.) From rod extended when energized to rod retracted when energized




Fig. 2

- <Step>
- Loosen small screw (4) and remove piston cover (1) and end cover (2) from body (3). See Fig.1. Leave piston cover gasket (5) and end cover gasket (6) attached to body (3). The installed position of the gasket at this time is shown in Fig. 2.
- Push spool valve (7) and spool spring (8) out from the end cover side (the letter "B" side of the body) of body (3). (Do not push them out from the opposite direction. Fig. 3)


3. Invert the spool valve 180° and insert it from the piston cover side (the side of the body marked "A") of body e. (**Fig. 4**)

4. Interchange piston cover gasket (5) and end cover gasket (6). (Fig. 5)

The positions for gaskets after replacement are like the **Fig. 6**.

 Interchange piston cover (1) and end cover (2). The installation must be performed from the piston cover side (the letter "B" side of the body). (Refer to Fig. 7.)

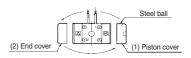
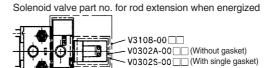
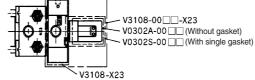
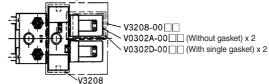



Fig. 7


At this time, install so that the steel ball of the piston cover faces the surface from which the lead wires protrude.

Solenoid Valve for CV3, Pilot Valve Part No.


V3108

Solenoid valve part no. for rod retraction when energized

Solenoid valve part no. for double solenoid

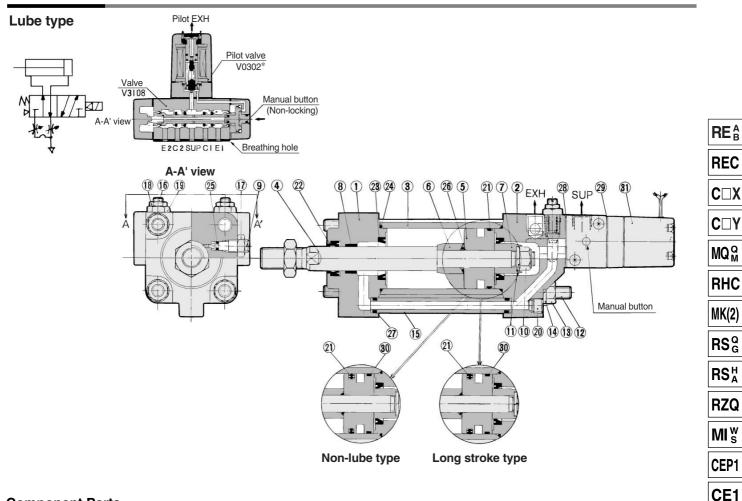
Note) Part number for the plate name of pilot valve is all V0302A.

CE2

ML2B

C_G^J5-S

CV


MVGQ

CC

RB

Valve Mounted Cylinder Double Acting, Single Rod Series CV3

Construction

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Matt black painted
2	Head cover	Aluminum alloy	Matt black painted
3	Cylinder tube	Aluminum alloy	Hard anodized
4	Piston rod	Carbon steel	Hard chrome plated
(5)	Piston	Aluminum alloy	Chromated
6	Cushion ring A	Rolled steel	Zinc chromated
\bigcirc	Cushion ring B	Rolled steel	Zinc chromated
(8)*	Bushing	Lead-bronze casted	
9	Cushion valve	Rolled steel	Electroless nickel plated
10	Piston nut	Rolled steel	Zinc chromated
1	Spring washer	Steel wire	Zinc chromated
(12)	Tie-rod	Carbon steel	Chromated
(13)	Tie-rod nut	Carbon steel	Black zinc chromated
14	Spring washer	Steel wire	Black zinc chromated
(15)	Pipe	Carbon steel tube	Chromated
(16)	Valve	Sulfur easy chipping steel	Electroless nickel plated
17	Lock nut	Carbon steel	Nickel plated
(18)	Lock nut	Carbon steel	Nickel plated
(19)	Needle guide	Sulfur easy chipping steel	Electroless nickel plated
20	Plug	Chromium molybdenum steel	Black zinc chromated
30	Wear ring	Resin	
_			

No.	Description	No. of solenoids	Rod extended when energized	Rod retracted when energized
(31)	Solenoid		(1)	(2)
31)	valve	Double	(*	3)

* How to order solenoid valves

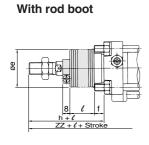
Note 1) V3108-00 Voltage Electrical entry Note 2) V3108-00 Voltage Electrical entry x 23 Note 3) V3208-00 Voltage Electrical entry

No.	Description	Material	Note
21)	Piston seal	NBR	
22	Rod seal	NBR	
23 *	Cushion seal	NBR	
24	Cylinder tube gasket	NBR	
25	Cushion valve seal	NBR	
26 *	Piston gasket	NBR	
27	Pipe gasket	NBR	
28	Head cover gasket	NBR	
(29)	Single solenoid gasket	NBR	
Ś	Double solenoid gasket	NBR	

* Not replaceable.

Replacement Parts: Seal Kit

					J
40	50	63	80	100	D-
CV3-40-PS	CV3-50-PS	CV3-63-PS	CV3-80-PS	CV3-100-PS	
	Set of nos.	above 21, 22, 24	, 25, 27, 28		-X
•					-^
40	50	63	80	100	20
CV3N40-PS	CV3N50-PS	CV3N63-PS	CV3N80-PS	CV3N100-PS	
	Set of nos.	above 21, 22, 24	0. 25. 27. 28		Da
	CV3-40-PS	CV3-40-PS CV3-50-PS Set of nos. 40 50 CV3N40-PS CV3N50-PS	CV3-40-PS CV3-50-PS CV3-63-PS Set of nos. above ②, ②, ② 40 50 63 CV3N40-PS CV3N50-PS CV3N63-PS	CV3-40-PS CV3-50-PS CV3-63-PS CV3-80-PS Set of nos. above ②, ②, ②, ③, ②, ② Set of nos. above ③, ②, ③, ③, ②, ③ Set of nos. above ③, ②, ③, ③ 40 50 63 80	CV3-40-PS CV3-50-PS CV3-63-PS CV3-80-PS CV3-100-PS Set of nos. above ②, ②, ②, ③, ⑤, ⑦, ⑧


* Seal kit includes ②), ②, ②, ③, ③, ②, ⑧. Order the seal kit, based on each bore size. (The parts indicated with numbers ③ and ⑳ are not replaceable.)

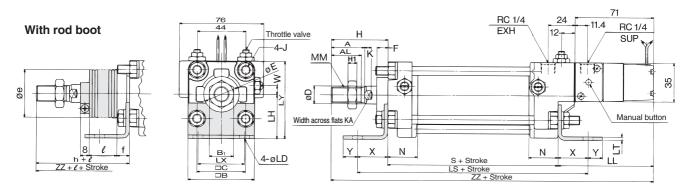
For the dimensions of DIN terminal, refer to page 10-15-59.

Series CV3

Basic Style: CV3B

Lube type (CV3B), Non-lube type (CV3BN)

76 44 Throttle valve		
4-J		RC 1/4 EXH 24 11.4 RC 1/4 SUP
Width across fla	tts KA	
	┼─┝╫╫╞═╤╗┈┝╧	Manual button
		N 71
B1	H S+Stroke	
	ZZ + Strok	e
	1	


Bore size (mm)	Stroke range* (mm)	Α	AL	в	Bı	с	D	Е	F	Hı	Т	J	к	КА	LL	мм	N	Q	s
40	Up to 500	30	27	60	22	44	16	32	10	8	18	M8 x 1.25	6	14	86	M14 x 1.5	27	38	84
50	Up to 600	35	32	70	27	52	20	40	10	11	18	M8 x 1.25	7	18	83	M18 x 1.5	30	43.5	90
63	Up to 600	35	32	85	27	64	20	40	10	11	18	M10 x 1.25	7	18	83	M18 x 1.5	31	49	98
80	Up to 750	40	37	102	32	78	25	52	14	13	20	M12 x 1.75	11	22	84	M22 x 1.5	37	63	116
100	Up to 750	40	37	116	41	92	30	52	14	16	20	M12 x 1.75	11	26	85	M26 x 1.5	40	73	126

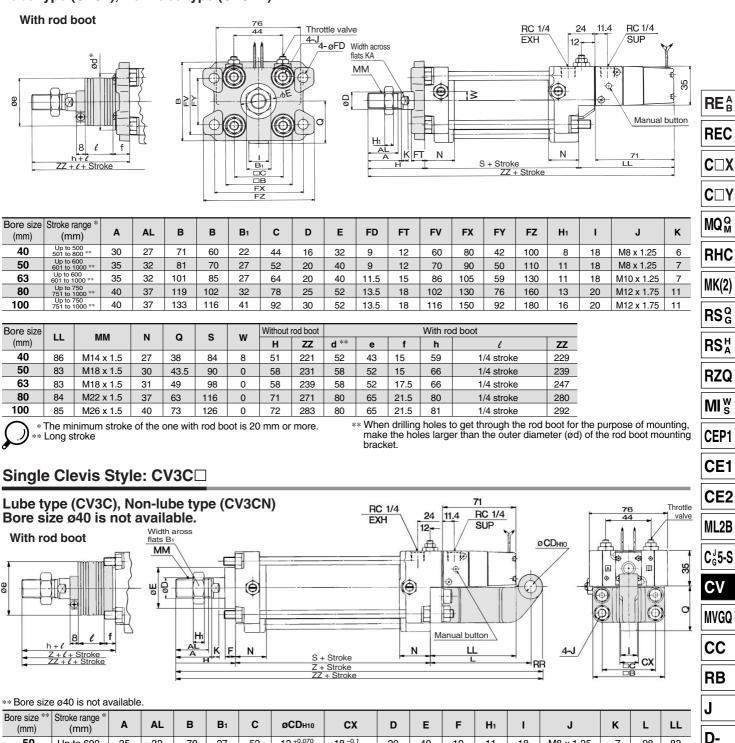
Bore size	147	Without	rod boot			Wit	h rod boot	
(mm)	W	н	ZZ	е	f	h	l	ZZ
40	8	51	221	43	11.2	59	1/4 stroke	229
50	0	58	231	52	11.2	66	1/4 stroke	239
63	0	58	239	52	11.2	66	1/4 stroke	247
80	0	71	271	65	12.5	80	1/4 stroke	280
100	0	72	283	65	14.0	81	1/4 stroke	292

 \ast The minimum stroke of the one with rod boot is 20 mm or more.

Axial Foot Style: CV3L

Lube type (CV3L), Non-lube type (CV3LN)

(mm)	oke range* (mm)	Α	AL	В	B1	С	D	Е	F	H1	J	к	LD	LH	LL	LS	LT	LX	LY
40	Up to 500 01 to 800*	30	27	60	22	44	16	32	10	8	M8 x 1.25	6	9	40	86	138	3.2	42	70
50 60	Up to 600 01 to 1000*	35	32	70	27	52	20	40	10	11	M8 x 1.25	7	9	45	83	144	3.2	50	80
63 ^L	Up to 600 01 to 1000*	35	32	85	27	64	20	40	10	11	M10 x 1.25	7	11.5	50	83	166	3.2	59	93
	Up to 750 51 to 1000*	40	37	102	32	78	25	52	14	13	M12 x 1.75	11	13.5	65	84	204	4.5	76	116
	Up to 750 51 to 1000*	40	37	116	41	92	30	52	14	16	M12 x 1.75	11	13.5	75	85	212	6	92	133


Bore size		N	<u> </u>	147	v	v	Without	rod boot			Witl	n rod boot	
(mm)	MM	Ν	S	W	~	T	н	ZZ	е	f	h	l	ZZ
40	M14 x 1.5	27	84	8	27	13	51	221	43	11.2	59	1/4 stroke	229
50	M18 x 1.5	30	90	0	27	13	58	231	52	11.2	66	1/4 stroke	239
63	M18 x 1.5	31	98	0	34	16	58	239	52	11.2	66	1/4 stroke	247
80	M22 x 1.5	37	116	0	44	16	71	271	65	12.5	80	1/4 stroke	280
100	M26 x 1.5	40	126	0	43	17	72	283	65	14.0	81	1/4 stroke	292

 \ast The minimum stroke of the one with rod boot is 20 mm or more. $\ \ast$ Long stroke

Rod Side Flange Style: CV3F□

Lube type (CV3F), Non-lube type (CV3FN)

	(mm)	MM	N	Q	RR	3	H 7 77			f	h 🗌	P		7	77		
В	ore size **	BABA	N	0		<u> </u>	Witho	out rod boot			With	n rod boo	ot				
	100	Up to 750	40	37	116	41	92	25 +0.084	35.5 -0.1	30	52	14	16	20	M12 x 1.75	11	110
	80	Up to 750	40	37	102	32	78	20 +0.084	31.5 ^{-0.1} -0.3	25	52	14	13	20	M12 x 1.75	11	105
	63	Up to 600	35	32	85	27	64	16 ^{+0.070}	25 -0.1	20	40	10	11	18	M10 x 1.25	7	100
	50	Up to 600	35	32	70	27	52	12 ^{+0.070}	18 ^{-0.1} -0.3	20	40	10	11	18	M8 x 1.25	7	98
	((((((((((((((((((((((((((((((((((((((((11111)															

246 258 52 11.2

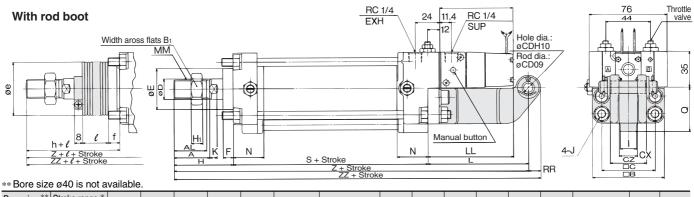
1/4 stroke

												.,
63	M18 x 1.5	31	49	16	98	58	256	272	52	11.2	66	1/4 stroke
80	M22 x 1.5	37	63	20	116	71	292	312	65	12.5	80	1/4 stroke
100	M26 x 1.5	40	73	25	126	72	308	333	65	14.0	81	1/4 stroke

* The minimum stroke of the one with rod boot is 20 mm or more.

43.5

M18 x 1.5


-Х

20-

Data

Double Clevis Style: CV3D

Lube type (CV3D), Non-lube type (CV3DN) Bore size ø40 is not available.

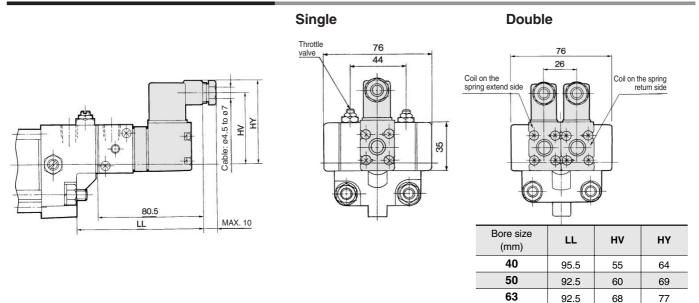
Bore size ** \$ (mm)	Stroke range * (mm)	Α	AL	в	B1	С	CD	сх	cz	D	Е	F	Hı	I	J	к	L
50	Up to 600	35	32	70	27	52	12	18 ^{+0.3} _{+0.1}	35.5	20	40	10	11	18	M8 x 1.25	7	98
63	Up to 600	35	32	85	27	64	16	25 ^{+ 0.3} + 0.1	50	20	40	10	11	18	M10 x 1.25	7	100
80	Up to 750	40	37	102	32	78	20	31.5 ^{+0.3} _{+0.1}	63	25	52	14	13	20	M12 x 1.75	11	105
100	Up to 750	40	37	116	41	92	25	35.5 ^{+0.3} _{+0.1}	71	30	52	14	16	20	M12 x 1.75	11	110

Bore size **		мм	N		RR	s	With	out rod	boot				With rod boot		
(mm)	LL	IVIIVI	IN	Q	пп	5	н	z	ZZ	е	f	h	l	Z	ZZ
50	83	M18 x 1.5	30	43.5	12	90	58	246	258	52	11.2	66	1/4 stroke	254	266
63	83	M18 x 1.5	31	49	16			256	272	52	11.2	66	1/4 stroke	264	280
80	84	M22 x 1.5	37	63	20	116	71	292	312	65	12.5	80	1/4 stroke	301	321
100	85	M26 x 1.5	40	73	25	126	72	308	333	65	14.0	81	1/4 stroke	317	342

^{*} Clevis pin and snap ring (cotter pin for 40) are shipped together. The minimum stroke with rod boot is 20 mm or more.

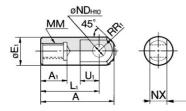
Center Trunnion Style: CV3T

Lube type (CV3T), Non-lube type (CV3TN)

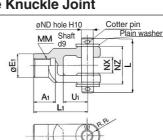

With rod boot

with re					7	6														
	$Z + \ell + 1/2 \operatorname{str}$ $B \ell$ $ZZ + \ell + \operatorname{Stroke}$				Throttle valve	2	M				2 stroke				24 12 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		RC 1/4 SUP Manual	button		
Bore size (mm)	Stroke range* (mm)	A	AL	в	B1	с	D	E	Ξ	F		Hı	J	ŀ	< L	.L	ММ	N	s	тв
40	25 to 500	30	27	60	22	44	16	3	2	1	0	8	M8 x 1.2	25	6 8	6 N	/14 x 1.5	27	84	65
50	25 to 600	35	32	70	27	52	20	4	0	1	D	11	M8 x 1.2	25	7 ε	3 N	/18 x 1.5	30	90	75
63	50 to 600	35	32	85	27	64	20	4	0	1	0	11	M10 x 1.	25	7 8	3 N	/18 x 1.5	31	98	90
80	50 to 750	40	37	102	32	78	25	5	2	1.	4	13	M12 x 1.	75 1	1 8	84 N	/l22 x 1.5	37	116	110
100	50 to 750	40	37	116	41	92	30	5	2	1.	4	16	M12 x 1.	75 1	1 8	5 N	//26 x 1.5	40	126	130
Bore size (mm)	ØTD _{e8}	ті	TQ	тт	тх	ТҮ	ΤZ	w	I	Q	With H	nout ro	d boot	e	f	Wit h	h rod boot		Z	ZZ
40	15 -0.032 -0.059	20	45	23	85	77.5	115	8	18	38	51	93	221	43	11.2	59	1/4 st	roke	101	229
50	15 -0.032 -0.059	20	50	23	95	87.5	125	0	18	43.5	58	103	231	52	11.2	66	1/4 sti	roke	111	239
63	18 ^{-0.032} -0.059	20	57	28	110	102	146	0	18	49	58	107	239	52	11.2	66	1/4 st	oke	115	247
80	25 ^{-0.040} -0.073	24	69.5	35	140	124.5	190	0	-	63	71	129	271	65	12.5	80	1/4 st		138	280
100	25 ^{-0.040} -0.073	24	79.5	43	162	144.5	212	0	20	73	72	135	283	65	14.0	81	1/4 sti	oke	144	292

* The minimum stroke of the one with rod boot is 20 mm or more.



Electrical Entry: Dimensions for DIN


Accessory Dimensions

I Type Single Knuckle Joint

Part no.	Applicable bore size (mm)	A	A 1	øE₁	Lı	ММ	R₁	U1	ØND _{H10}	NX
I-04	40	69	22	24	55	M14 x 1.5	15.5	20	12+0.070	$16^{-0.1}_{-0.3}$
I-05	50, 63	74	27	28	60	M18 x 1.5	15.5	20	12+0.070	16 -0.1
I-08	80	91	37	36	71	M22 x 1.5	22.5	26	18 ^{+0.070}	28 -0.1
I-10	100	105	37	40	83	M26 x 1.5	24.5	28	20 + 0.084	30 -0.1

Y Type Double Knuckle Joint

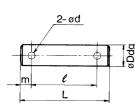
80

100

76

83

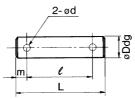
93.5


94.5

85

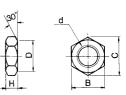
92

Material: Cast iron													
Part no.	Applicable bore size (mm)	A 1	E1	Lı	ММ	RR1	U1	ND	NX	NZ	L	Cotter pin size	Plain washer size
Y-04C	40	22	24	55	M14 x 1.5	13	25	12	16 + 0.3	38	55.5	ø3 x 18ℓ	Polished round 12
Y-05C	50, 63	27	28	60	M18 x 1.5	15	27	12	16 ^{+0.3} +0.1	38	55.5	ø3 x 18ℓ	Polished round 12
Y-08C	80	37	36	71	M22 x 1.5	19	28	18	28 ^{+0.3} +0.1	55	76.5	ø4 x 25ℓ	Polished round 18
Y-10C	100	37	40	83	M26 x 1.5	21	38	20	30 ^{+ 0.3} + 0.1	61	83	ø4 x 30ℓ	Polished round 20
* Knuc	Knuckle pin, cotter pin, and plain washer are shipped together.												


Clevis Pin

Material:	Carbon	steel

Part no.	Applicable bore size (mm)	øDd9	L	ød	e	m	Applicable plain washer	Applicable cotter pin
CDP-3A	50	$12^{-0.050}_{-0.093}$	55.5	3	47.5	4.0	Polished round 12	3 x 18
CVD-06	63	$16 {}^{-0.050}_{-0.093}$	75	4	65	5.0	Polished round 16	4 x 22
CVD-08	80	20 -0.065 -0.117	94	5	79	7.5	Polished round 20	5 x 30
CVD-10	100	$25{}^{-0.065}_{-0.117}$	105	5	90	7.5	Polished round 24	5 x 35

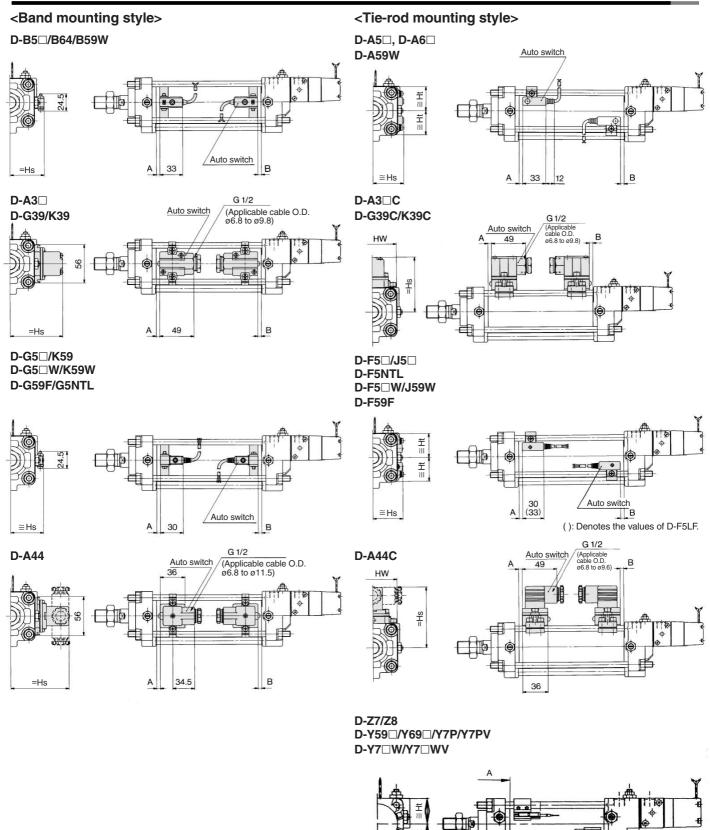

Knuckle Pin

Material: Carbon steel

Part no.	Applicable bore size (mm)		L	l	m	ød (Drill through)	Applicable plain washer	Applicable cotter pin
CDP-3A	40, 50, 63	$12^{-0.050}_{-0.093}$	55.5	47.5	4	3	Polished round 12	ø3 x 18 <i>l</i>
CDP-5A	80	$18 {}^{-0.050}_{-0.093}$	76.5	66.5	5	4		ø4 x 25ℓ
CDP-6A	100	20 -0.065 -0.117	83	73	5	4	Polished round 20	ø4 x 30ℓ

Rod End Nut

Material:	Rolled st	eel				
Part no.	Applicable bore size (mm)	d	н	в	с	D
NT-04	40	M14 x 1.5	8	22	25.4	21
NT-05	50, 63	M18 x 1.5	11	27	31.2	26
NT-08	80	M22 x 1.5	13	32	37	31
NT-10	100	M26 x 1.5	16	41	47.3	39


59

Data

10-15-60

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

Ŧ

≅Hs

В

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

Proper	Auto	Switch	n Moui	nting I	Positic	on								
Auto switch model	D-A5□, D-A3□/ D-A44// D-G39/0 D-K39/0	A44C G39C	D-B5[D-G5[D-K59 D-G59	⊐W ∋W	D-F5 D-J5 D-F5 D-J5 D-F5	50 50W 59W	D-GS D-KS D-GS		D-A	59W	D-Ft	INTL	D-B59V D-Z7□/ D-Y59□ D-Y7P/ D-Y7□' D-Y7□'	Z80 ⊒/Y69⊡ Y7PV W
Bore size (mm)	A	в	А	в	Α	в	A	в	Α	в	A	в	A	в
40	0	1	0	1.5	3.5	7.5	0	3	1	5	8.5	12.5	0.5	4.5
40	(0)	(0)	(0.5)	(0)	(6.5)	(4.5)	(2)	(0)	(4)	(2)	(11.5)	(9.5)	(3.5)	(1.5)
50	0	1	0	1.5	3.5	7.5	0	3	1	5	8.5	12.5	0.5	4.5
50	(0)	(0)	(0.5)	(0)	(6.5)	(4.5)	(2)	(0)	(4)	(2)	(11.5)	(9.5)	(3.5)	(1.5)
63	0	5.5	0	6	5.5	12	1	7.5	3	9.5	10.5	17	2.5	9
03	(2.5)	(1.5)	(3)	(2)	(9)	(8)	(4.5)	(3.5)	(6.5)	(5.5)	(14)	(13)	(6)	(5)
80	2	8.5	2.5	9	8.5	15	4	10.5	6	12.5	13.5	20	5.5	12
00	(6)	(4)	(6.5)	(4.5)	(12.5)	(10.5)	(8)	(6)	(10)	(8)	(17.5)	(15.5)	(9.5)	(7.5)
100	4	10.5	4.5	11	10.5	17	6	12.5	8	14.5	15.5	22	7.5	14
100	(7.5)	(6.5)	(8)	(7)	(14)	(13)	(9.5)	(8.5)	(11.5)	(10.5)	(19)	(18)	(11)	(10)

Proper Auto Switch Mounting Position

Note 1) (): Denotes the values of non-lube type.

Note 2) D-G5 W, K59W, G58A and G59F can not be attached on ø40 and ø50 lube type cylinder.

Note 3) D-B5 type, D-G5 type, D-K5 type are mountable only upon a receipt of order. (Not mountable after the time of shipment)

Auto Switch Mounting Height

Auto switch model	D-B5□/B64 D-B59W D-G5□ D-K59 D-G5NTL D-G5□W D-K59W D-G59F	D-A3 D-G39 D-K39	D-A44	D-A D-A D-A	6□	D-F5 D-J5 D-F5 D-J5 D-F5 D-F5	⊡ ⊡W 9W 9F	D-G	.3□C i39C i39C	D-A4	14C	D-Z7[D-Y59 D-Y7[D-Y7[) >	D-Y6 D-Y7 D-Y7	PV
Bore size (mm)	Hs	Hs	Hs	Hs	Ht	Hs	Ht	Hs	Hw	Hs	Hw	Hs	Ht	Hs	Ht
40	38	72.5	80.5	40	31	38.5	31	73	69	81	69	30	30	30.5	30
50	43.5	78	86	43.5	35	42.5	35	78.5	77	86.5	77	34	34	35	34
63	50.5	85	93	49	42	48	42	85.5	91	93.5	91	41	41	42.5	41
80	59	93.5	101.5	55.5	50	54	50	94	107	102	107	49.5	48.5	51	48.5
100	69.5	104	112	63	57.5	62	57.5	104	121	112	121	58.5	56	59	56

Operating Range

		Dav	! (
Auto switch model			e size (r	nm)	
	40	50	63	80	100
D-Z7□/Z80	8	7	9	9.5	10.5
D-A3□/A44					
D-A3 C/D-A44C	9	10	11	11	11
D-A5□/A6□	9	10		11	
D-B5□/B64	1				
D-A59W	13	13	14	14	15
D-B59W	14	14	17	16	18
D-Y59□/Y69□					
D-Y7P/Y7PV	8	7	5.5	6.5	6.5
D-Y7□W/Y7□WV					
D-F5□/J5□					
D-F5□W/J59W	4	4	4.5	4.5	4.5
D-F5NTL/F59F					
D-G5□/K59					
D-G5□W/K59W	5	6	6.5	6.5	7
D-G5NTL/G59F					
D-G39/K39	9	0	10	10	11
D-G39C, D-K39C	9	9	10	10	11
,					

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion.) There may be the case it will vary substantially depending on an ambient environment. Other than the models listed in "How to Order", the following auto switches are applicable.

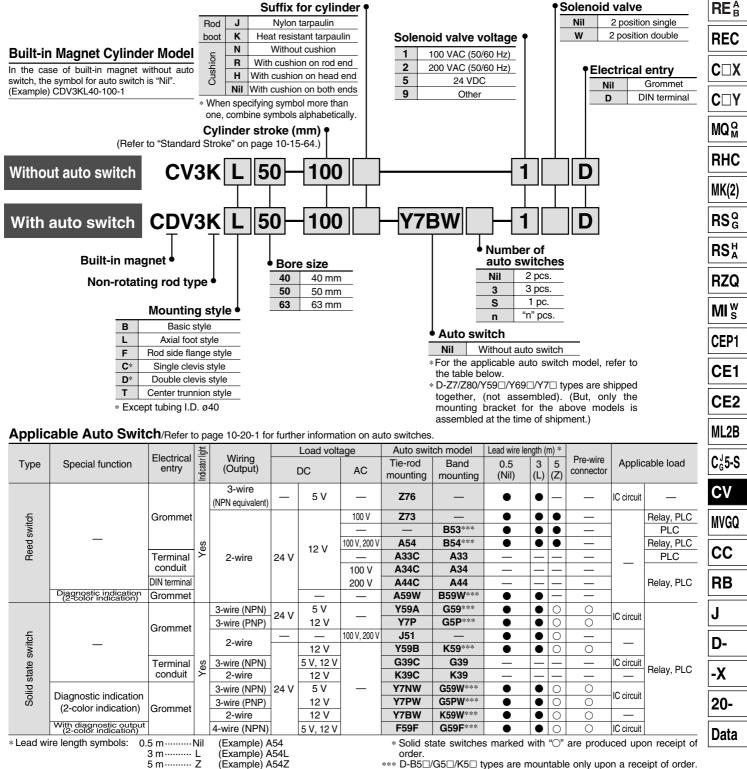
For detailed specifications, refer to page 10-20-1.

	Туре	Model	Electrical entry (Fetching direction)	Features	(2
		D-A53/A56		—	F	2
l	Reed	D-A64/A67	Orement (In line)			-
	switch	D-B64	Grommet (In-line)	Without indicator light	Γ	ī
L		D-Z80			U	J
l		D-F59/F5P/J59		_ I		_
l		D-F59W/F5PW/J59W	Orement (In line)	2-color indication	L	J
L	Solid state	D-F5NTL	Grommet (In-line)	With timer	-	-
L	switch	D-G5NTL		with timer	-)
l		D-Y69A/Y7PV/Y69B	Grommet	— I		_
L		D-Y7NWV/Y7PWV/Y7BWV	(Perpendicular)	2-color indication	2	21
L	* With pre-w	ire connector is also available in	solid state auto switc	hes.	-	-
	* Normally o	, refer to page 10-20-66. closed (NC = b contact), solid For details, refer to page 10-20-4		/Y7H type) are also	۵	Di

Series CV3

Minimum Stroke For Auto Switch Mounting

n: Number of auto switches


Auto switch	N		Mounting brackets			Contor trunnier		
model	INO. C	f auto switches mounted	Mounting brackets other than center trunnion	ø40	ø50	Center trunnion Ø63	ø80	ø100
D-A5□/A6□ D-F5□/J5□		ifferent sides, ne side), 1	15	g	0	100	110	120
D-F5□W/J59W D-F59F		Same side)	$15 + 55 \frac{(n-2)}{2}$ n = 2, 4, 6, 8	90 + 55 n = 4, 8,	$\frac{(n-4)}{2}$	$100 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	$110 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	$120 + 55 \frac{(n-4)^2}{2}$ n = 4, 8, 12, 16
		ifferent sides, ne side)	20		0	100	110	120
D-A59W		Same side)	$20 + 55 \frac{(n-2)}{2}$	90 + 55		$100 + 55 \frac{(n-4)}{2}$	$110 + 55 \frac{(n-4)}{2}$	$120 + 55 \frac{(n-4)^2}{2}$
	-	1	n = 2, 4, 6, 8 15	n = 4, 8, 9	12, 16… 0	n = 4, 8, 12, 16… 100	n = 4, 8, 12, 16… 110	n = 4, 8, 12, 16 120
		ifferent sides, ne side), 1	25	11	0	120	130	140
D-F5NTL	n (Same side)	$25 + 55 \frac{(n-2)}{2}$ n = 2, 4, 6, 8	110 + 55 n = 4, 8,	$5 \frac{(n-4)}{2}$ 12. 16	$120 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	$130 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	$140 + 55 \frac{(n-4)^2}{2}$ n = 4, 8, 12, 16
	-	Different sides	15	9		100	11	
D-B5□/B64	2	Same side	75	9	0	100	11	10
D-G5□/K59	-			90 + 50		$100 + 50 \frac{(n-4)}{2}$	$110 + 50 \frac{(n-4)}{2}$	
D-G5⊟W		Different sides	$15 + 50 \frac{(n-2)}{2}$ n = 2, 4, 6, 8	n = 4, 8,		n = 4, 8, 12, 16	n = 4, 8, 1	
D-K59W	n							
D-G59F		Same side	75 + 50 (n–2)	90 + 50		100 + 50 (n – 2)	110 + 5	· · ·
-G5NTL			n = 2, 3, 4…	n = 2, 4	, 6, 8	n = 2, 4, 6, 8…	n = 2, 4	, 6, 8…
		1	10	9	0	100	11	10
	_	Different sides	20	9	0	100	11	10
	2	Same side	75	9	0	100	11	10
			$20 + 50 \frac{(n-2)}{2}$		$0 \frac{(n-4)}{2}$	$100 + 50 \frac{(n-4)}{2}$	110 + 5	
D-B59W		Different sides	n = 2, 4, 6, 8	n = 4, 8,	12 16	n = 4, 8, 12, 16	n = 4, 8,	12 16
20011	n							
		Same side	75 + 50 (n – 2)	90 + 50		100 + 50 (n – 2)	110 + 50	· ,
			n = 2, 3, 4…	n = 2, 4		n = 2, 4, 6, 8	n = 2, 4	
	-		15	9		100	11	
	2	Different sides	35	10		100	11	
–		Same side	100	10	00	100	11	
)-A3□)-G39	Different sides		35 + 30 (n – 2) n = 2, 3, 4…	100 + 30 n = 2, 4	· /	100 + 30 (n – 2) n = 2, 4, 6, 8···	110 + 30 n = 2, 4	
D-K39	n		100 + 100 (n - 2)		<u>100 + 100 (n - 2)</u>	11 – 2, 1, 0, 0	110 + 100	
		Same side	n = 2, 3, 4		n = 2, 4, 6, 8		n = 2, 4,	
		1	10	10		100	11	
	-	Different sides	35	9		100	11	
		Dinoronic oldoo			-	100		10
	2	Samo sido	55			100		
	2	Same side	55	9		100 . 00 (= 0)		
	2	Same side Different sides	35 + 30 (n – 2)	90 + 30	(n – 2)	100 + 30 (n - 2)	110 + 3	0 (n – 2)
D-A44	2 n		35 + 30 (n - 2) n = 2, 3, 4	90 + 30 n = 2, 4	(n – 2) ., 6, 8…	n = 2, 4, 6, 8…	110 + 3 n = 2, 4	0 (n – 2) I, 6, 8…
D-A44		Different sides	35 + 30 (n - 2) n = 2, 3, 4 55 + 50 (n-2)	90 + 30 n = 2, 4 90 + 50	(n - 2) , 6, 8… (n - 2)	n = 2, 4, 6, 8… 100 + 50 (n - 2)	110 + 3 n = 2, 4 110 + 5	0 (n – 2) I, 6, 8… 0 (n – 2)
D-A44		Different sides Same side	35 + 30 (n - 2) n = 2, 3, 4 55 + 50 (n-2) n = 2, 3, 4	90 + 30 n = 2, 4 90 + 50 n = 2, 4,	(n - 2) ., 6, 8 (n - 2) 6, 8,	$\begin{array}{l} n=2,4,6,8\cdots \\ 100+50(n-2) \\ n=2,4,6,8\cdots \end{array}$	110 + 30 n = 2, 4 110 + 50 n = 2, 4	0 (n – 2) I, 6, 8… 0 (n – 2) I, 6, 8…
)-A44		Different sides Same side	35 + 30 (n - 2) n = 2, 3, 4 55 + 50 (n-2)	90 + 30 n = 2, 4 90 + 50	(n - 2) ., 6, 8 (n - 2) 6, 8,	n = 2, 4, 6, 8… 100 + 50 (n - 2)	110 + 3 n = 2, 4 110 + 5	0 (n – 2) I, 6, 8… 0 (n – 2) I, 6, 8…
D-A44	n	Different sides Same side 1 Different sides	35 + 30 (n - 2) n = 2, 3, 4 55 + 50 (n-2) n = 2, 3, 4	90 + 30 n = 2, 4 90 + 50 n = 2, 4,	(n-2) ., 6, 8 (n-2) 6, 8, 0	$\begin{array}{l} n=2,4,6,8\cdots \\ 100+50(n-2) \\ n=2,4,6,8\cdots \end{array}$	110 + 3 n = 2, 4 110 + 5 n = 2, 4 11 11	0 (n - 2) 4, 6, 8 0 (n - 2) 4, 6, 8 10
D-A44		Different sides Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10 \end{array}$	90 + 30 n = 2, 4 90 + 50 n = 2, 4, 9	$\begin{array}{c} (n-2) \\ , 6, 8 \cdots \\ (n-2) \\ 6, 8, \cdots \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50(n-2)\\ n=2,4,6,8\cdots\\ 100 \end{array}$	110 + 3 n = 2, 4 110 + 5 n = 2, 4 11	0 (n - 2) 4, 6, 8 0 (n - 2) 4, 6, 8 10
	n	Different sides Same side 1 Different sides Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,\ 3,\ 4\cdots\\ 55+50\ (n-2)\\ n=2,\ 3,\ 4\cdots\\ 10\\ 20 \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 10 $100 + 35$	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ (n-2) \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots \\ 100+50\ (n-2)\\ n=2,4,6,8\cdots \\ 100\\ 100\\ 100\\ 100+35\ (n-2) \end{array}$	110 + 3 n = 2, 4 110 + 5 n = 2, 4 11 11 11 11 110 + 3	0 (n - 2) 4, 6, 8 0 (n - 2) 4, 6, 8 10 10 5 (n - 2)
D-A3⊡C	n 2	Different sides Same side 1 Different sides	$\begin{array}{c} 35+30\ (n-2)\\ n=2,\ 3,\ 4\cdots\\ 55+50\ (n-2)\\ n=2,\ 3,\ 4\cdots\\ 10\\ 20\\ 100 \end{array}$	90 + 30 n = 2, 4 90 + 50 n = 2, 4, 9 10 10 10 10 10 10 10 10	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ (n-2) \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50(n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ \end{array}$	110 + 3 n = 2, 4 110 + 5 n = 2, 4 11 11 11	0 (n - 2) 4, 6, 8 0 (n - 2) 4, 6, 8 10 10 5 (n - 2)
9-A3□C 9-G39C	n	Different sides Same side 1 Different sides Same side Different sides	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 10 $100 + 35$	$\begin{array}{c} (n-2) \\ (n-2) \\$	$\begin{array}{c} n=2,4,6,8\cdots \\ 100+50\ (n-2)\\ n=2,4,6,8\cdots \\ 100\\ 100\\ 100\\ 100+35\ (n-2) \end{array}$	110 + 3 n = 2, 4 110 + 5 n = 2, 4 11 11 11 11 110 + 3	0 (n - 2) 4, 6, 8 0 (n - 2) 4, 6, 8 10 10 5 (n - 2) 6, 8
D-A3□C D-G39C	n 2	Different sides Same side 1 Different sides Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2) \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 10 $100 + 35$	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ (n-2) \\ , 6, 8 \\ \cdots \\ 100 + 100 \ (n-2) \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots \\ 100+50\ (n-2)\\ n=2,4,6,8\cdots \\ 100\\ 100\\ 100\\ 100+35\ (n-2) \end{array}$	110 + 33 $n = 2, 4$ $110 + 55$ $n = 2, 4$ 111 111 111 $110 + 32$ $n = 2, 4,$	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ 6, 8 \cdots \\ 0 \ (n-2) \end{array}$
D-A3□C D-G39C	n 2	Different sides Same side 1 Different sides Same side Different sides	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 10 $100 + 35$	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50(n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100+35(n-2)\\ n=2,4,6,8\cdots\end{array}$	110 + 33 $n = 2, 4$ $110 + 55$ $n = 2, 4$ 111 111 111 $110 + 33$ $n = 2, 4,$ $110 + 100$ $n = 2, 4,$	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ 6, 8 \cdots \\ 0 \ (n-2) \\ 6, 8 \cdots \\ 0 \ (n-2) \\ 6, 8 \cdots \end{array}$
D-A3□C D-G39C	n 2 n	Different sides Same side 1 Different sides Same side Different sides	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 100 $100 + 35$ $n = 2, 4$	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ (n-2) \\ , 6, 8 \\ 0 \\ 100 + 100 \ (n-2) \\ n = 2, 4, 6, 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50(n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100+35(n-2)\\ n=2,4,6,8\cdots\\ \end{array}$	110 + 3i $n = 2, 4$ $110 + 5i$ $n = 2, 4$ 111 111 111 $110 + 3i$ $n = 2, 4,$ $110 + 100$ $n = 2, 4,$ 111	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ 6, 8 \cdots \\ 0 \ (n-2) \\ 6, 8 \cdots \\ 10 \\ 10 \\ \end{array}$
D-A3□C D-G39C	n 2	Different sides Same side 1 Different sides Same side Different sides 1 Different sides	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20 \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 $100 + 35$ $n = 2, 4$ $100 + 35$ $n = 2, 4$	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} n=2,4,6,8\cdots \\ 100+50\ (n-2)\\ n=2,4,6,8\cdots \\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots \\ \end{array}$	110 + 3i $n = 2, 4$ $110 + 5i$ $n = 2, 4$ 111 111 111 $110 + 3i$ $n = 2, 4,$ $110 + 100$ $n = 2, 4,$ 111 111	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
D-A3□C D-G39C	n 2 n	Different sides Same side 1 Different sides Same side Different sides Same side 1 Different sides Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 $100 + 35$ $n = 2, 4$ 100	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} n=2,4,6,8\cdots \\ 100+50\ (n-2)\\ n=2,4,6,8\cdots \\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots \\ \end{array}$	110 + 33 $n = 2, 4$ $110 + 55$ $n = 2, 4$ 111 111 111 $110 + 33$ $n = 2, 4,$ $110 + 100$ $n = 2, 4,$ 111 111 111	$\begin{array}{c} 0 \ (n-2) \\ a, 6, 8 \cdots \\ 0 \ (n-2) \\ b, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
)-A3□C)-G39C)-K39C	n 2 n	Different sides Same side 1 Different sides Same side Different sides 1 Different sides	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 $100 + 35$ $n = 2, 4$ 100 9 9 9 $90 + 35$	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} n=2,4,6,8\cdots \\ 100+50\ (n-2) \\ n=2,4,6,8\cdots \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 + 35\ (n-2) \\ n=2,4,6,8\cdots \\ \hline \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 + 35\ (n-2) \end{array}$	110 + 33 $n = 2, 4$ $110 + 55$ $n = 2, 4$ 111 111 111 $110 + 33$ $n = 2, 4,$ $110 + 100$ $n = 2, 4,$ $110 + 101$ 111 111 111	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
)-A3□C)-G39C -K39C	n 2 n	Different sides Same side 1 Different sides Same side Different sides Same side 1 Different sides Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 $100 + 35$ $n = 2, 4$ 9 9 9 9 9 $90 + 35$ $n = 2, 4$	$\begin{array}{c} (n-2) \\ , 6, 8 \\ (n-2) \\ 6, 8, \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} n=2,4,6,8\cdots \\ 100+50\ (n-2) \\ n=2,4,6,8\cdots \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 + 35\ (n-2) \\ n=2,4,6,8\cdots \\ \end{array}$	110 + 33 $n = 2, 4$ $110 + 55$ $n = 2, 4$ 111 111 111 $110 + 33$ $n = 2, 4,$ $110 + 100$ $n = 2, 4,$ 111 111 111 111 111	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
)-A3□C)-G39C)-K39C	n 2 n 2	Different sides Same side 1 Different sides Same side Different sides Same side 1 Different sides Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4, 9$ 9 10 $100 + 35$ $n = 2, 4$ $100 + 35$ $n = 2, 4$ $90 + 35$ $n = 2, 4$ $90 + 50$	$\begin{array}{c} (n-2) \\ (n-2) \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots\\ \hline \end{array}$	$110 + 3i \\ n = 2, 4$ $110 + 5i \\ n = 2, 4$ $111 + 3i \\ n = 2, 4,$ $110 + 3i \\ n = 2, 4,$ $110 + 100 \\ n = 2, 4,$ $111 + 100 \\ n = 2, 4,$ $111 + 101 + 3i \\ n = 2, 4$ $111 + 3i \\ n = 2, 4$ $110 + 3i \\ n = 2, 4$	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
0-A3□C 0-G39C 0-K39C	n 2 n 2	Different sides Same side 1 Different sides Same side Different sides Same side Different sides Same side Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4, 9$ 9 10 $100 + 33$ $n = 2, 4$ 100 9 9 $90 + 35$ $n = 2, 4$ $90 + 50$ $n = 2, 4$	$\begin{array}{c} (n-2) \\ (n-3) \\$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots\\ \end{array}$	$110 + 3i \\ n = 2, 4$ $110 + 5i \\ n = 2, 4$ $111 + 3i \\ n = 2, 4,$ $110 + 3i \\ n = 2, 4,$ $110 + 100 \\ n = 2, 4,$ $111 + 100 \\ n = 2, 4,$ $111 + 101 + 3i \\ n = 2, 4,$ $111 + 101 + 3i \\ n = 2, 4,$ $111 + 101 + 3i \\ n = 2, 4,$ $111 + 5i \\ n = 2, 4,$	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
D-A3□C D-G39C D-K39C	n 2 n 2 2 n	Different sides Same side 1 Different sides Same side Different sides Same side Different sides Same side Different sides Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4, 9$ 9 10 $100 + 35$ $n = 2, 4$ $100 + 35$ $n = 2, 4$ $90 + 35$ $n = 2, 4$ $90 + 50$	$\begin{array}{c} (n-2) \\ (n-3) \\$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots\\ \hline \end{array}$	$110 + 3i \\ n = 2, 4$ $110 + 5i \\ n = 2, 4$ $111 + 3i \\ n = 2, 4,$ $110 + 3i \\ n = 2, 4,$ $110 + 100 \\ n = 2, 4,$ $111 + 100 \\ n = 2, 4,$ $111 + 101 + 3i \\ n = 2, 4,$ $111 + 101 + 3i \\ n = 2, 4,$ $111 + 101 + 3i \\ n = 2, 4,$ $111 + 5i \\ n = 2, 4,$	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
D-A3 C D-G39C D-K39C D-A44C	n 2 n 2 2 n	Different sides Same side 1 Different sides Same side Different sides Same side Different sides Same side Same side	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 15\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 100 $100 + 38$ $n = 2, 4$ 9 $90 + 35$ $n = 2, 4$ $90 + 50$ $n = 2, 4$	$\begin{array}{c} (n-2) \\ , 6, 8 \cdots \\ (n-2) \\ 6, 8, \cdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 5, 8, \cdots \\ 0 \\ 0 \\ 5, 8, \cdots \\ 100 + 100 (n-2) \\ n=2, 4, 6, 8 \cdots \\ 0 \\ 0 \\ 0 \\ (n-2) \\ , 6, 8 \cdots \\ (n-2) \\ , 6, 8 \cdots \\ (n-2) \\ , 6, 8 \cdots \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50(n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	$110 + 3i \\ n = 2, 4$ $110 + 5i \\ n = 2, 4$ $111 \\ 111 \\ 111 \\ 110 + 3i \\ n = 2, 4,$ $110 + 3i \\ n = 2, 4,$ $110 + 100 \\ n = 2, 4,$ $111 \\ 111 $	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \cdots \\ 0 \ (n-2) \\ k, 6, 8 \cdots \\ \hline 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ 6, 8 \cdots \\ 0 \\ 10 \\ 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ k, 6, 8 \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $
D-A44 D-A3 C D-G39C D-K39C D-K39C D-A44C D-27 /Z80 D-Y59 /Y7P D-Y7 W	n 2 n 2 2 n	Different sides Same side 1 Different sides Same side Different sides Same side Different sides Same side Different sides Same side	$\begin{array}{r} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 15\\ 15+40\ \frac{(n-2)}{2}\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 100 $100 + 38$ $n = 2, 4$ 9 9 $90 + 35$ $n = 2, 4$ $90 + 50$ $n = 2, 4$ $n = 2, 4$ $90 + 50$ $n = 2, 4$ $90 + 50$ $n = 2, 4$ $90 + 50$ $n = 2, 4$	$\begin{array}{c} (n-2) \\ (n-2) \\$	$\begin{array}{r} n=2,4,6,8\cdots\\ 100+50\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots\\ 100+50\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 90\\ 90+40\ \frac{(n-4)}{2}\end{array}$	$110 + 3i \\ n = 2, 4$ $110 + 5i \\ n = 2, 4$ $111 + 5i \\ n = 2, 4$ $111 + 111 + 111 + 111 + 110 + 3i \\ n = 2, 4, 110 + 100 \\ n = 2, 4, 110 \\ n = 2, 10, 100 \\ $	$\begin{array}{c} 0 \ (n-2) \\ a, 6, 8 \\ \cdots \\ 0 \ (n-2) \\ b, 6, 8 \\ \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ 6, 8 \\ \cdots \\ 10 \\ 10 \\ 6, 8 \\ \cdots \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ b, 6, 8 \\ \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 105 \\ 105 \\ + 40 \ \frac{(n-2)}{2} \end{array}$
D-A3 C D-G39C D-K39C D-A44C D-A44C D-Z7 Z80 D-Y59 /Y7P D-Y7 W	n 2 n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Different sides Same side 1 Different sides Same side Different sides Same side Different sides Same side 1 different sides, ame side), 1 n	$\begin{array}{c} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 15\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 100 $100 + 38$ $n = 2, 4$ 9 $90 + 35$ $n = 2, 4$ $90 + 50$ $n = 2, 4$	$\begin{array}{c} (n-2) \\ , , 6, 8 \cdots \\ (n-2) \\ 6, 8, \cdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 5, 8, \cdots \\ 0 \\ 0 \\ 0 \\ 5, 6, 8 \cdots \\ 100 + 100 (n-2) \\ n = 2, 4, 6, 8 \cdots \\ 0 \\ 0 \\ 0 \\ (n-2) \\ n = 2, 4, 6, 8 \cdots \\ 0 \\ 0 \\ 0 \\ 0 \\ (n-2) \\ n = 4, 8, 12, 16 \cdots \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50(n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	$110 + 3i \\ n = 2, 4$ $110 + 5i \\ n = 2, 4$ $111 \\ 111 \\ 111 \\ 110 + 3i \\ n = 2, 4,$ $110 + 3i \\ n = 2, 4,$ $110 + 100 \\ n = 2, 4,$ $111 \\ 111 $	$\begin{array}{c} 0 \ (n-2) \\ a, 6, 8 \\ \cdots \\ 0 \ (n-2) \\ b, 6, 8 \\ \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ 6, 8 \\ \cdots \\ 10 \\ 10 \\ 6, 8 \\ \cdots \\ 10 \\ 10 \\ 10 \\ 5 \ (n-2) \\ b, 6, 8 \\ \cdots \\ 10 \\ 10 \\ 10 \\ 10 \\ 105 \\ 105 \\ + 40 \ \frac{(n-2)}{2} \end{array}$
D-A3 C D-G39C D-K39C D-A44C D-A44C D-Z7 /Z80 D-Y59 /Y7P	n 2 n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Different sides Same side 1 Different sides Same side Different sides Same side Different sides Same side 1 different sides, ame side), 1	$\begin{array}{r} 35+30\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 20\\ 100\\ 20+35\ (n-2)\\ n=2,3,4\cdots\\ 100+100\ (n-2)\\ n=2,3,4,5\cdots\\ 10\\ 20\\ 55\\ 25+35\ (n-2)\\ n=2,3,4\cdots\\ 55+50\ (n-2)\\ n=2,3,4\cdots\\ 10\\ 15\\ 15+40\ \frac{(n-2)}{2}\\ n=2,4,6,8\cdots\\ \end{array}$	90 + 30 $n = 2, 4$ $90 + 50$ $n = 2, 4,$ 9 10 $100 + 35$ $n = 2, 4$ 9 9 $90 + 35$ $n = 2, 4$ $90 + 50$ $n = 2, 4$ $100 + 50$ 100	$\begin{array}{c} (n-2) \\ ,, 6, 8 \cdots \\ (n-2) \\ 6, 8, \cdots \\ 0 \\ 0 \\ 0 \\ 0 \\ 5, 8, \cdots \\ 0 \\ 0 \\ 5, 8, \cdots \\ 100 + 100 (n-2) \\ n = 2, 4, 6, 8 \cdots \\ 0 \\ 0 \\ 0 \\ (n-2) \\ n = 2, 4, 6, 8 \cdots \\ 0 \\ 0 \\ 0 \\ (n-2) \\ n = 4, 8, 12, 16 \cdots \\ 5 \end{array}$	$\begin{array}{c} n=2,4,6,8\cdots\\ 100+50\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100+35\ (n-2)\\ n=2,4,6,8\cdots\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 10$	110 + 3i = 2, 4 $110 + 5i = 2, 4$ $110 + 5i = 1, 4$ $111 = 111$ $111 = 111$ $110 + 3i = 2, 4,$ $110 + 100 = 2, 4,$ $110 + 100 = 1, 4,$ $110 + 3i = 2, 4$ $110 + 3i = 2, 4$ $110 + 3i = 2, 4$ $110 + 5i = 1, 4$	$\begin{array}{c} 0 \ (n-2) \\ k, 6, 8 \\ \hline \\ 0 \ (n-2) \\ k, 6, 8 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 5 \ (n-2) \\ 6, 8 \\ \hline \\ 0 \\ \hline \\ 105 \\ 105 \\ \hline \\ 105 \\ \hline 105 \\ 105 \\ \hline 105 \\ $

10-15-62

Valve Mounted Cylinder: Non-rotating Rod Type Double Acting, Single Rod Series CV3K

How to Order

Non-lube Type: ø40, ø50, ø63

 Since there are other applicable auto switches than listed, refer to page 10-15-61 for details.

• For details about auto switches with pre-wire connector, refer to page 10-20-66.

*** D-B5□/G5□/K5□ types are mountable only upon a receipt of order. (Not mountable after the time of shipment) (Not mountable after the time of shipment)

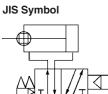
10-15-63

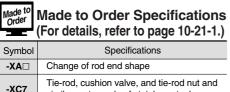
63

SMC

Series CV3K

Adjustable speed.


Built-in throttle valves are provided to enable speed adjustments in each direction.


Operation type can be changed to rod extended when energized or rod retracted when energized.

A manual operation mechanism is provided as standard equipment (non-locking).

An auto switch cylinder with the switch installed can also be manufactured.

similar parts made of stainless steel -XC15 Change of tie-rod length

Specifications

Applicable bore size (mm)	40	50	63	
Action		Double acting		
Туре		Non-lube		
Fluid		Air		
Proof pressure		1.35 MPa		
Maximum operating pressure		0.9 MPa		
Minimum operating pressure		0.15 MPa		
Ambient & fluid temperature	-1	0 to 50°C (No freezi	ng)	
Cushion	Interchangeable			
Thread tolerance	JIS Class 2			
Stroke length tolerance	Up to 250 st +1.0 , 251 to 600 st +1.4			
Effective area of valve (Cv factor)		18 mm² (1.0)		
Port size		Rc 1/4		
Lubrication	N	ot required (Non-lub	e)	
Electrical entry	G	rommet, DIN termin	al	
Piston speed		50 to 500 mm/s *		
Rod non-rotating accuracy	±0.5°			
Allowable rotational torque	0.44 N·m or less			
Mounting	Basic style, Axial foot style, Rod side flange style, Single clevis style, Double clevis style, Center trunnion style			

* Operate within the range of absorbed energy.

Allowable Kinatia Energy

Allowable Kinetic Ellergy					
Bore size (mm)	40	50	63		
Allowable kinetic energy	2.4	4.4	7.8		

Solenoid Valve Specifications

Applicable solenoid valv	Applicable solenoid valve model		V3□08		
Coil rated voltage			100/200 V	AC (50/60 Hz), 24 VDC	
Allowable voltage			-15 to 10	% of the rated voltage	
Coil insulation			Class B	or equivalent (130°C)	
	AC	la muste	50 Hz	8.5 VA	
Apparent power Note)			Inrush	60 Hz	7.5 VA
Apparent power			50 Hz	7.0 VA	
		Holding	60 Hz	5.5 VA	
Power consumption Note)	DC	6 W			
Note) At the rated voltage					

Note) At the rated voltage.

Standard Stroke

1400

1200 (mm/s)

1000

Piston speed

Bore size (mm)	Standard stroke (mm)		
40	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500*		
50 , 63	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600*		
late) The optimizer with the standard strates indicated shows on he delivered in a short term			

Note) The cylinders with the standard strokes indicated above can be delivered in a short term. Intermediate stroke except mentioned above is manufactured upon receipt of order. • When the auto switch is attached, the minimum stroke is going to be different. Refer to

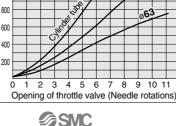
page 10-15-62. The minimum stroke length is different in the trunnion style. Refer to page 10-15-62 for

further information. Please consult with SMC for longer strokes than the strokes marked with *.

Opening Range of Throttle Valve and Driving Speed

Conditions: Operating pressure 0.5 MPa, Horizontal mounting, No load, Spring return side

• The speeds shown in the graph are for


reference.

Rod Boot Material

Symbol Rod boot material		Max. ambient temperature
J Nylon tarpaulin		70°C
K Heat resistant tarpaulin		110°C*

* Maximum ambient temperature for the rod boot itself.

Related things about auto switches and the mounting brackets part numbers are the same as these of Series CV3. For details, refer to pages 10-15-59 to 10-15-62.

	_	
We	1	h+
we	IU	ht

Weight (kg						
	Bore size (mm)	40	50	63		
	Basic style	1.30	1.73	2.57		
	Foot style	1.47	1.93	2.86		
Basic	Rod side flange style	1.56	2.14	3.19		
weight	Single clevis style	-	2.46	3.68		
	Double clevis style	-	2.51	3.73		
	1.95	2.52	3.96			
Additional weight per each 50 mm of stroke		0.22	0.28	0.37		
Accessory	Single knuckle	0.23	0.26	0.26		
bracket	Double knuckle (with pin)	0.37	0.43	0.43		
Calculation	(Example) CV/3KL 40-100-1					

alculation: (I Example) CV3KL40-100-

• Cylinder stroke100 (st) 1.47 + 0.22 x 100 ÷ 50 = 1.9 kg

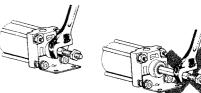
Accessory

	Mounting	Basic style	Foot style	Rod side flange style	Single clevis style	Double clevis style	Center trunnion style
Standard	Rod end nut	•	•	•	•	•	•
equipment	Clevis pin	—	—	—	—	—	—
	Single knuckle joint	•	•	•	•	•	•
Option	Double knuckle joint * (with pin)	•	•	•	•	•	•
	With rod boot	•	•	•	•	•	•

* Pin, plain washer and cotter pin are shipped together with double clevis and double knuckle joint.

Handling

- 1. Adjusting of the piston speed
- 2. Change of voltage specifications
- 3. Manual override
- 4. Changing between rod extended when energized and rod retracted when energized.


Since the operations above 1. to 4. are the same as Series CV3, refer to page 10-15-54.

Precautions Be sure to read before handling. For Safety Instructions and Actuator Precautions, refer to pages 10-24-3 to 10-24-6. For Series p ICV3K, refer to page 10-15-54.

Operating Precautions

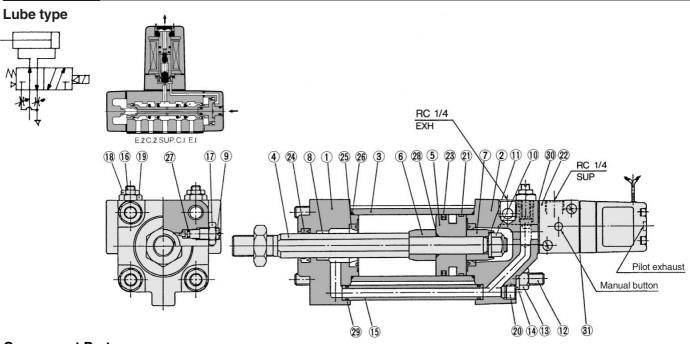
A Caution

- 1. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.
 - If rotational torque is applied, the nonrotating guide will become deformed, causing a loss of non-rotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sore the retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.

Disassembly/Replacement

▲ Caution

1. When replacing rod seals, please contact SMC.


Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.

65

REA

Series CV3K

Construction

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Matt black painted
2	Head cover	Aluminum alloy	Matt black painted
3	Cylinder tube	Aluminum alloy	Hard anodized
4	Piston rod	Carbon steel	Hard chrome plated
5	Piston	Aluminum alloy	Chromated
6	Cushion ring A	Rolled steel	Zinc chromated
$\overline{\mathcal{O}}$	Cushion ring B	Rolled steel	Zinc chromated
8*	Non-rotating guide	Oil impregnated sintered alloy	
9	Cushion valve	Rolled steel	Electroless nickel plated
10	Piston nut	Rolled steel	Zinc chromated
11	Spring washer	Steel wire	Zinc chromated
(12)	Tie-rod	Carbon steel	Uni-chromated
13	Tie-rod nut	Carbon steel	Black zinc chromated

No.	Description		Material	Note
(14)	Spring	washer	Steel wire	Black zinc chromated
(15)	Pipe		Carbon steel tube	Uni-chromated
16	Needle		Sulfur easy chipping steel	Electroless nickel plated
\bigcirc	lock nu	t	Carbon steel	Nickel plated
(18)	lock nu	t	Carbon steel	Nickel plated
(19)	Needle	guide	Sulfur easy chipping steel	Electroless nickel plated
20	Plug		Chromium molybdenum steel	Black zinc chromated
21)	Wear ring		Resin	
No.	Description	No. of solenoids	Rod extended when energized	Rod retracted when energized

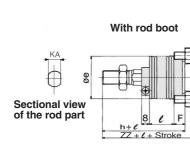
		Soleriolus	when energized	when energized
22	Solenoid	Single	(1)	(2)
Ŵ	valve	Double	(3	3)

* How to order solenoid valves

Note 1) V3108-00 Voltage Electrical entry Note 2) V3108-00 Voltage Electrical entry -X23 Note 3) V3208-00 Voltage Electrical entry

Throttle

No.	Description	Material	Note
23	Piston seal	NBR	
24)	Rod seal	NBR	
25*	Cushion seal	NBR	
26	Cylinder tube gasket	NBR	
27)	Cushion valve seal	NBR	
28 *	Piston gasket	NBR	
29	Pipe gasket	NBR	
30	Head cover gasket	NBR	
<u>_</u>	Single solenoid gasket	NBR	
31)	Double solenoid gasket	NBR	
* Not	ranlaaaahla		


* Not replaceable.

Replacement Parts: Seal Kit

Bore size (mm)	40	50	63				
Kit no.	CV3K40-PS	CV3K50-PS	CV3K63-PS				
Contents	ntents Set of nos. above 3, 2, 2, 2, 3.						

Seal kit includes 23, 24, 26, 27, 29, 30. Order the seal kit, based on each bore size. (Not possible to

Basic Style: CV3KB□

Α

30

35

	10		THOLLE	
122	_44_		valve	
		1/1	-4-J	Г
	11	1/ 1	4-0	E V
L –		¥ /		V
, da	, itti r	$\overline{\mathbf{P}}$		
	S *** Z			
t (O)		• I		
Ľ	1	Sh		Ŧ
		5 13	>1	
	(())	- P	->1	ØĒ
79	A	PΓ		0
(A)			1.00	- 4
6		\mathbf{O}	a	
	$2 \mid N$	\forall		
	$n \mid f$			
	1			
	B ₁			
		-		

76

	replace 25, 28.)
Double width KA MM G H F N H	RC 1/4 24 11.4 RC 1/4 EXH 12 SUP III III SUP Manual button S Stroke

F	Hı	I	J	KA	LL	ММ	N	Q	s
10	8	18	M8 x 1.25	14	86	M14 x 1.5	27	38	84
10	11	18	M8 x 1.25	18	83	M18 x 1.5	30	43.5	90
10	11	18	M10 x 1.25	18	83	M18 x 1.5	31	49	98
		~ ~			6.11				

* The minimum stroke of the one with rod boot is 20 mm or more. ** For dimensions of DIN terminal, refer to page 10-15-59.

External dimensions of each mounting bracket other than basic style are the same, except KA dimension. Refer to pages 10-15-71 to 10-15-73.
 For accessory, refer to page 10-15-59.

63	Up to	600	35	32	85	27	64	20	40	10	11	1
Bore size	W Without rod boot			With rod boot						T 1	Υ	
(mm)	vv	н	ZZ	е	f	h		I		ZZ	Ľ	
40	8	51	221	43	11.2	59		1/4 strol	ke	229		• Ex
50	0	58	231	52	11.2	66		1/4 strol	ke	239		the
63	0	58	239	52	11.2	66		1/4 strol	ke	247		• Fo

B1

22

27

С

44

52

D

16

20

Е

32

40

в

60

70

AL

27

32

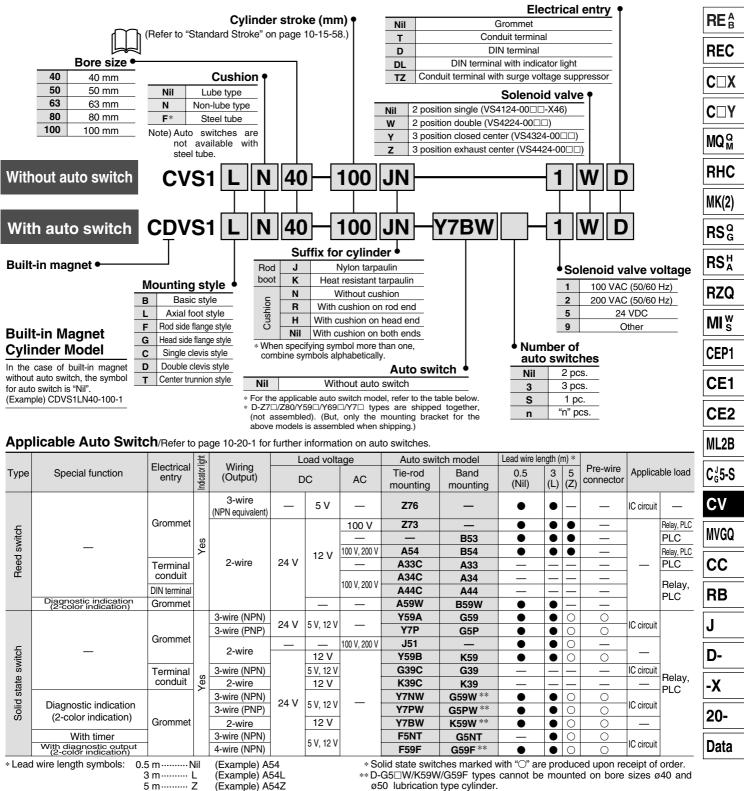
Bore size Stroke range

(mm)*

Up to 500

Up to 600

(mm)


40

50

Valve Mounted Cylinder **Double Acting, Single Rod** Series CVS1 Lube/Non-lube Type: ø40, ø50, ø63, ø80, ø100

How to Order

5 m Z (Example) A54Z

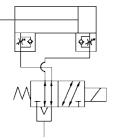
 Since there are other applicable auto switches than listed, refer to page 10-15-76 for details. For details about auto switches with pre-wire connector, refer to page 10-20-66.

10-15-67

Series CVS1

Speed controller installed

Operation type can be changed to rod extended when energized or rod retracted when energized.


A selection of solenoid valves is possible.

Single, double and 3 position solenoid valves are mountable.

An auto switch cylinder with the switch installed can also be manufactured.

JIS Symbol

^o Made to Order Specifications (For details, refer to page 10-21-1.)

Symbol	Specifications
-XA🗆	Change of rod end shape
-XC4	With heavy duty scraper
-XC6	Piston rod and rod end nut made of stainless steel
-XC7	Tie-rod, cushion valve, and tie-rod nut and
-XC7	similar parts made of stainless steel
-XC14	Change of trunnion bracket mounting position
-XC15	Change of tie-rod length
-XC22	Fluoro rubber seals
-XC27	Double clevis pin and double knuckle pin
X021	made of stainless steel
-XC28	Compact flange made of SS400
-XC29	Double knuckle joint with spring pin
-XC35	With coil scraper

Specifications

Specifications					
Applicable bore size (mm)	40, 50, 63	3, 80, 100			
Туре	Lube	Non-lube			
Series	CVS1	CVS1⊡N			
Action	Double	e acting			
Fluid	A	ir			
Proof pressure	1.5	MPa			
Maximum operating pressure	1.0	MPa			
Minimum operating pressure	0.05	MPa			
Ambient & fluid temperature	-10 to 60°C (No freezing)				
Cushion	Air cushion				
Thread tolerance	JIS Class 2				
Stroke length tolerance	Up to 250 st: +1.0 , 251 to 1,000 st: -1.4				
Effective area of valve (Cv factor)	Single: 26.5 mm ² (1.47)				
Port size	Rc 1/4				
Electrical entry	Grommet, Conduit terminal, DIN terminal, DIN terminal with indicator light, Conduit terminal with surge voltage suppressor				
Piston speed	50 to 500 mm/s * ^{Note)}				
Mounting	Basic style, Axial foot style, Rod side flange style, Head side flange style, Single clevis style, Double clevis style, Center trunnion style				

* Operate within the range of absorbed energy.

Note) For operating piston speed for each size, refer to page 10-15-69.

Allowable Kinetic Energy

(i)							
Bore size (mm)	40	50	63	80	100		
Allowable kinetic energy	2.4	4.4	7.8	11.7	20.5		

Solenoid Valve Specifications

Applicable solenoid valv	VS4□24						
Coil rated voltage		100/200 VAC (50/60 Hz), 24 VDC					
Allowable voltage		-15 to 10% of the rated voltage					
Coil insulation		Class B or equivalent (130°C)					
	AC	Inrush	50 Hz	100 VA			
• • • • • • • • • • • • • • • • • • •			60 Hz	90 VA			
Apparent power Note)		Holding	50 Hz	20 VA			
		Holding	60 Hz	14 VA			
Power consumption Note)	DC	13.2 W					

Note) At the rated voltage.

Standard Stroke

Bore size (mm)	Standard stroke (mm)			
40	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500			
50 , 63	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600			
80, 100	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700			

A Precautions

Be sure to read before handling. For Safety Instructions and Common Precautions, refer to pages 10-24-3 to 6. For Actuator Precautions on Series CVS1, refer to page 10-15-53 because they are the same as those for Series CV3.

Rod Boot Material

Symbol	Rod boot material	Max. ambient temperature					
J	Nylon tarpaulin	70°C					
Κ	Heat resistant tarpaulin	110°C*					

* Maximum ambient temperature for the rod boot itself.

Minimum Stroke for Auto Switch Mounting

▲ Caution

1. Each switch and mounting style of cylinder has different minimum mountable stroke. Be careful especially of the center trunnion style. (For further information, refer to page 10-15-77.)

7 IN

(kg)

Accessorv

	Mounting	Basic style	Axial foot style	Rod side flange style	Head side flange style	Single clevis style	Double* clevis style	Center trunnion style
Standard	Rod end nut	•	•		•	•	•	•
equipment	Clevis pin			—				—
	Single knuckle joint	•	•		•	•		
Option	Double knuckle joint * (with pin)	●	•	•	•	•	•	•
	With rod boot	•	•	•	•	•	•	•

* Pin, plain washer and cotter pin are packaged together with double clevis and double knuckle joint.

Weight

						(3/
	Bore size (mm)	40	50	63	80	100
	Basic style	2.48 (2.53)	3.04 (3.08)	4.12 (4.16)	5.81 (5.96)	7.66 (7.86)
	Axial foot style	2.65 (2.7)	3.24 (3.28)	4.41 (4.45)	6.6 (6.75)	8.59 (8.79)
Desis	Rod side flange style	2.88 (2.93)	3.64 (3.68)	5.08 (5.12)	7.65 (7.8)	9.98 (10.18)
Basic weight	Head side flange style	2.98 (3.03)	3.78 (3.82)	5.08 (5.12)	7.65 (7.8)	9.98 (10.18)
weight	Single clevis style	2.74 (2.79)	3.48 (3.52)	4.87 (4.91)	7.19 (7.34)	9.96 (10.16)
	Double clevis style	2.73 (2.78)	3.46 (3.5)	4.89 (4.93)	7.18 (7.33)	9.98 (10.18)
	Trunnion style	3.08 (3.18)	3.78 (3.88)	5.46 (5.66)	8.14 (8.43)	11.18 (11.57)
Additional weight per each 50 mm	All mounting brackets (Except trunnion style of iron tube)	0.22 (0.28)	0.28 (0.35)	0.37 (0.43)	0.52 (0.70)	0.65 (0.87)
of stroke	Steel tube trunnion	(0.36)	(0.46)	(0.65)	(0.86)	(1.07)
Accessory	Single knuckle	0.23	0.26	0.26	0.60	0.83
bracket	Double knuckle (with pin)	0.37	0.43	0.43	0.87	1.27
Calculation:	(Example) CVS1L40-100-1				* (): Steel	tube type

Additional weight.....0.22 (kg/50 st)

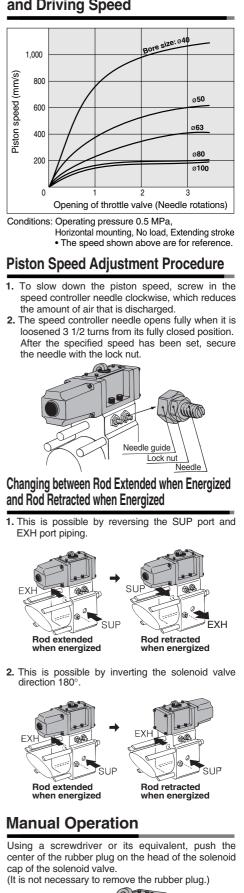
* Add 0.34 kg for the double solenoid style.

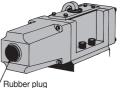
Mounting Bracket Part No.

40	50	63	80	100
CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10
CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10
	CA1-L04 CA1-F04 CA1-C04	CA1-L04 CA1-L05 CA1-F04 CA1-F05 CA1-C04 CA1-C05	CA1-L04 CA1-L05 CA1-L06 CA1-F04 CA1-F05 CA1-F06 CA1-C04 CA1-C05 CA1-C06	CA1-L04 CA1-L05 CA1-L06 CA1-L08 CA1-F04 CA1-F05 CA1-F06 CA1-F08 CA1-C04 CA1-C05 CA1-C06 CA1-C08

Order two foot brackets per cylinder.

For double clevis style, pin for clevis, plain washer and split pin are shipped together.


Auto Switch Mounting Bracket Part No.

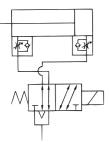

Auto switch model		Bo	ore size (m	m)	
Auto Switch model	40	50	63	80	100
D-A5□/A6□/A59W/F5□/J5□ D-F5□W/J59W/F5NTL/F59F	BT-04	BT-04	BT-06	BT-08	BT-08
D-A3□/A44/G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M
D-B5□/B64/B59W/G5□/K59 D-G5□W/K59W/G59F/G5NTL	BA-04	BA-05	BA-06	BA-08	BA-10
D-A3 C/A44C/G39C/K39C*	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100
D-Z7□/Z80/Y59□/Y69□/Y7P D-Y7PV/Y7□W/Y7□WV	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080

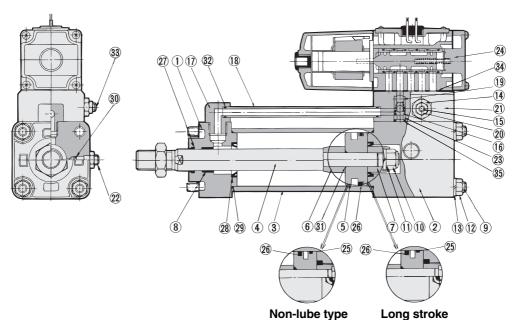
* Mounting bracket belongs to D-A3 C/A44C/G39C/K39C. When the mounting bracket is needed separately, order with the above part number. Besides, when ordering an auto switch alone, specify like the below according to the cylinder size.

Ex.) ø40.....D-A3 C-4 ø80D-A3□C-8 ø50-----D-A3□C-5 ø100-----D-A3□C-10 ø63.....D-A3□C-6

Opening Range of Throttle Valve and Driving Speed

69


REA


Data

Series CVS1

Construction

Lube type

Non-lube type

Component Parts

00	nponent Parts	2	
No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Matt black painted
2	Head cover	Aluminum alloy	Matt black painted
3	Cylinder tube	Aluminum alloy	Hard anodized
4	Piston rod	Carbon steel	Hard chrome plated
5	Piston	Aluminum alloy	Chromated
6	Cushion ring A	Rolled steel	Zinc chromated
7	Cushion ring B	Rolled steel	Zinc chromated
8*	Bushing	Lead-bronze casted	
9	Tie-rod	Carbon steel	Uni Chromated
(10)	Piston nut	Rolled steel	Zinc chromated
11	Spring washer	Steel wire	Zinc chromated
(12)	Tie-rod nut	Carbon steel	Black zinc chromated
(13)	Spring washer	Steel wire	Black zinc chromated
(14)	Needle guide	Carbon steel	Electroless nickel plated
(15)	Speed adjustment needle	Carbon steel	Electroless nickel plated
(16)	Check spring	Steel wire	Zinc chromated
17	Guide tube fitting	Aluminum alloy	Platinum silver
(18)	Pipe	Carbon steel tube	Uni Chromated
(19)*	Check ball	Polyurethane rubber	⁹ /32
20	lock nut	Carbon steel	Nickel plated
21)	Sub-plate	Aluminum alloy	Platinum silver
22	Cushion valve port	Rolled steel	Electroless nickel plated
23*	Valve	Brass	
24)	Solenoid valve Note)	—	Refer to the note below.
25	Wear ring	Resin	

Note) Add "-X46" to the end of the part numbers for single solenoid type. • How to order solenoid valves/VS4D24-00 Voltage Electrical entry

* Not replaceable.

iston seal		
	NBR	
lod seal	NBR	
ushion seal	NBR	
ylinder tube gasket	NBR	
ushion valve seal	NBR	
iston gasket	NBR	
ipe gasket	NBR	
peed adjustment valve seal	NBR	
lasket	NBR	
alve port gasket	NBR	
	Jushion seal vlinder tube gasket Jushion valve seal ston gasket pe gasket peed adjustment valve seal asket	vision seal NBR vision seal NBR vinder tube gasket NBR ushion valve seal NBR ston gasket NBR pe gasket NBR peed adjustment valve seal NBR asket NBR

Replacement Parts: Seal Kit

Lube Type

Bore size (mm)	40	50	63	80	100
Kit no.	CVS1-40-PS	CVS1-50-PS	CVS1-63-PS	CVS1-80-PS	CVS1-100-PS
Contents		Set of nos.	above 26, 27, 29	, 30, 32, 35.	

Non-lube Type

_

	-				
Bore size (mm)	40	50	63	80	100
Kit no.	CVS1N40-PS	CVS1N50-PS	CVS1N63-PS	CVS1N80-PS	CVS1N100-PS
Contents		Set of nos.	above 26, 27, 29), 30, 32, 35	

* Seal kit includes 26, 27, 29, 30, 32, 35. Order the seal kit, based on each bore size. (The parts indicated with numbers 3 and 3 are not replaceable.)

Valve Mounted Cylinder Double Acting, Single Rod Series CVS1

Basic Style: CVS1B

100

40

159.6

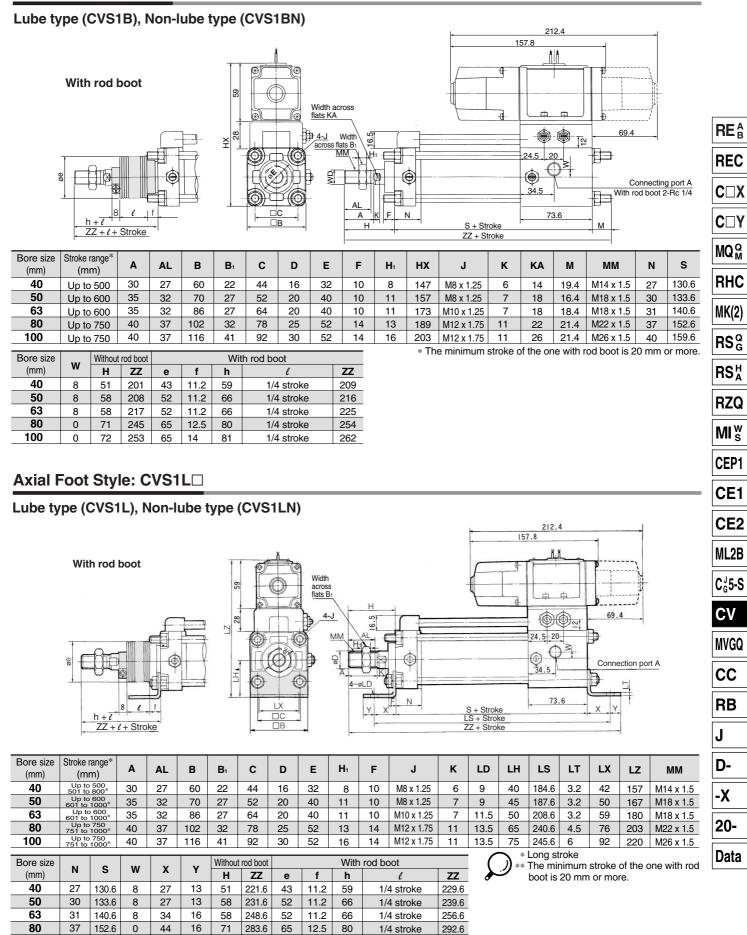
0

17

72

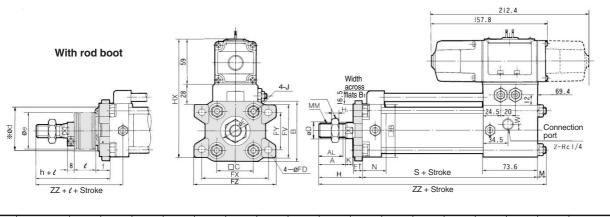
291.6

14


65

81

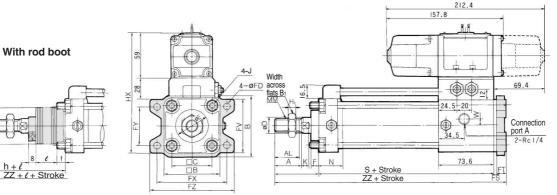
SMC


1/4 stroke

300.6

Rod Side Flange Style: CVS1F□

Lube type (CVS1F), Non-lube type (CVS1FN)


Bore size (mm)	Stroke rang (mm)	e* A	AL	в	в	B1	с	D	Е	FD	FT	FV	FX	FY	FZ	Hı	нх	J	к
40	Up to 500 501 to 800	« <u>3</u> 0	27	71	60	22	44	16	32	9	12	60	80	42	100	8	147	M8 x 1.25	6
50	Up to 600 601 to 1000	* 35	32	81	70	27	52	20	40	9	12	70	90	50	110	11	157	M8 x 1.25	7
63	Up to 600 601 to 1000	_{1*} 35	32	101	86	27	64	20	40	11.5	15	86	105	59	130	11	173	M10 x 1.25	7
80	Up to 750 751 to 1000		37	119	102	32	78	25	52	13.5	18	102	130	76	160	13	189	M12 x 1.75	11
100	Up to 750 751 to 1000		37	133	116	41	92	30	52	13.5	18	116	150	92	180	16	203	M12 x 1.75	11
Bore size (mm)	М	ММ	N	S	w	Withou H	t rod boot	d *	е	f	With h	rod bo	ot ℓ	Z	z	* (ل		troke inimum stroke th rod boot is t	

									*					
(mr	n)	м	MM	N	5	W	Н	ZZ	d *	е	f	h	l	ZZ
4	0	19.4	M14 x 1.5	27	130.6	8	51	201	52	43	15	59	1/4 stroke	209
5	0	16.4	M18 x 1.5	30	133.6	8	58	208	58	52	15	66	1/4 stroke	216
6	3	18.4	M18 x 1.5	31	140.6	8	58	217	58	52	17.5	66	1/4 stroke	225
8	0	21.4	M22 x 1.5	37	152.6	0	71	245	80	65	21.5	80	1/4 stroke	254
10	0	21.4	M26 x 1.5	40	159.6	0	72	253	80	65	21.5	81	1/4 stroke	262

- or more.
- * Machine larger holes than the outside diameter ød of the mounting bracket for rod boot when mounting the rod boot part to the through for mounting.

Rear Flange Style: CVS1G□

Lube type (CVS1G), Non-lube type (CVS1GN)

Bore size (mm)	Stroke (m		Α	AL	в	в	B1	с	D	Е	F	FD	FS	FT	FV	FX	FY	FZ	H1	нх	J
40	Up to	o 500	30	27	71	60	22	44	16	32	10	9	4	12	60	80	42	100	8	147	M8 x 1.25
50	Up to	600	35	32	81	70	27	52	20	40	10	9	4	12	70	90	50	110	11	157	M8 x 1.25
63	Up to	o 600	35	32	101	86	27	64	20	40	10	11.5	0	15	86	105	59	130	11	173	M10 x 1.25
80	Up to	750	40	37	119	102	32	78	25	52	14	13.5	0	18	102	130	76	160	13	189	M12 x 1.75
100	Up to	750	40	37	133	116	41	92	30	52	14	13.5	0	18	116	150	92	180	16	203	M12 x 1.75
Bore size (mm)	к	м	M	N	S	w	Without H	rod boot		•	With h	rod bo	ot		ZZ	\mathcal{Q}		e minim boot is			he one with re.
40	6	M14	x 1.5	27	130.6	8	51	197.6	e 43	11.2	59	1/4	ر stroke		22	o					

7

7

11

11

M18 x 1.5

M18 x 1.5

M22 x 1.5

M26 x 1.5

30

31

37

40

133.6

140.6

152.6

159.6

8

8

0

0

50

63

80

100

66

66

80

81

1/4 stroke

1/4 stroke

1/4 stroke

1/4 stroke

215.6

221.6

250.6

258.6

207.6

213.6

241.6

249.6

52

52

65

65

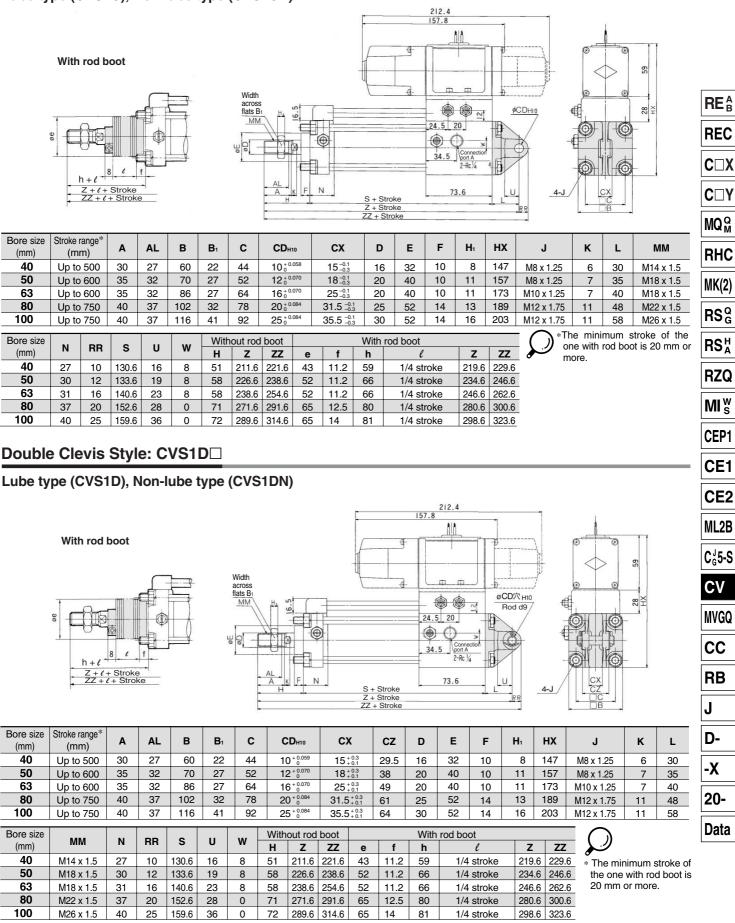
11.2

11.2

12.5

14

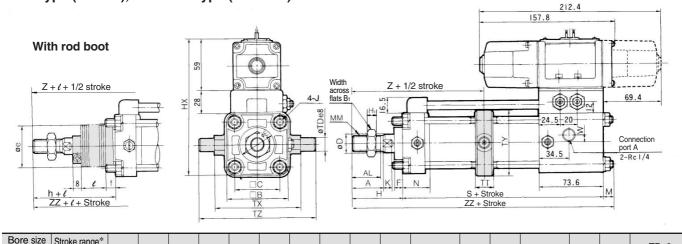
58


58

71

73

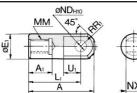
Single Clevis Style: CVS1C \Box


Lube type (CVS1C), Non-lube type (CVS1CN)

* Clevis pin, flat washer and cotter pin are shipped together.

Center Trunnion Style: CVS1T

Lube type (CVS1T), Non-lube type (CVS1TN)


(mm)	(mm)	A	AL	В	B1	С	D	E	F	H,	нх	J	к	м	ММ	N	S	TDe8
40	Up to 500	30	27	60	22	44	16	32	10	8	147	M8 x 1.25	6	11.4	M14 x 1.5	27	130.6	
50	Up to 600	35	32	70	27	52	20	40	10	11	157	M8 x 1.25	7	11.4	M18 x 1.5	30	133.6	15 -0.032 -0.059
63	Up to 600	35	32	86	27	64	20	40	10	11	173	M10 x 1.25	7	13.4	M18 x 1.5	31	140.6	
80	Up to 750	40	37	102	32	78	25	52	14	13	189	M12 x 1.75	11	18.4	M22 x 1.5	37	152.6	
100	Up to 750	40	37	116	41	92	30	52	14	16	203	M12 x 1.75	11	16.4	M26 x 1.5	40	159.6	25 -0.040

Bore size		TY	-			With	out rod	boot				With	rod boot		
(mm)	π	ТХ	IY	TZ	w	н	z	ZZ	е	f	h		l	Z	ZZ
40	22	85	62	117	8	51	93	193	43	11.2	59		1/4 stroke	101	201
50	22	95	74	127	8	58	103	203	52	11.2	66		1/4 stroke	111	211
63	28	110	90	148	8	58	107	212	52	11.2	66		1/4 stroke	115	220
80	34	140	110	192	0	71	129	242	65	12.5	80		1/4 stroke	138	251
100	40	162	130	214	0	72	135	248	65	14	81		1/4 stroke	144	257

* The minimum stroke of the one with rod boot is 20 mm or more.

Accessory Dimensions

I Type Single Knuckle Joint

Material: Free cutting sulfur steel

Part no.	Applicable bore size (mm)	A	A1	ØE1	Lı	ММ	R۱	Uı	ØND _{H10}	NX
I-04	40	69	22	24	55	M14 x 1.5	15.5	20	12 ^{+0.070}	16 ^{+0.1}
I-05	50, 63	74	27	28	60	M18 x 1.5	15.5	20	12 ^{+0.070}	16 ^{-0.1} -0.3
I-08	80	91	37	36	71	M22 x 1.5	22.5	26	18 ^{+0.070}	28 ^{-0.1} -0.3
I-10	100	105	37	40	83	M26 x 1.5	24.5	28	20 + 0.084	30 ^{-0.1}

Knuckle Pin, Clevis Pin

Material: Carbon steel

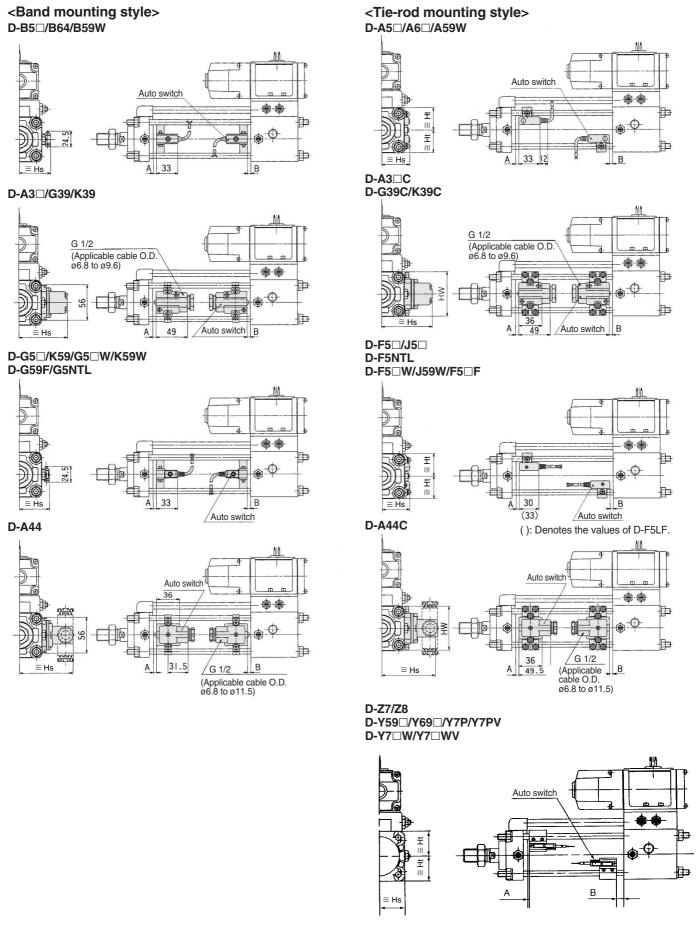
Part no.		ore size (mm)	øDd9	L	e	m	ød	Applicable
. artifici	Clevis	Knuckle	2Duc	_	•		(Drill through)	cotter pin
CDP-2A	40	—	10-0.046	46	38	4	3	ø3 x 18ℓ
CDP-3A	50	40, 50, 63	12-0.050	55.5	47.5	4	3	ø3 x 18ℓ
CDP-4A	63	—	16-0.050	71	61	5	4	ø4 x 25ℓ
CDP-5A	—	80	18 ^{-0.050}	76.5	66.5	5	4	ø4 x 25ℓ
CDP-6A	80	100	20-0.065	83	73	5	4	ø4 x 30ℓ
CDP-7A	100	—	25 ^{-0.065} -0.117	88	78	6	4	ø4 x 36ℓ

Y Type Double Knuckle Joint

øND hole H10 * Knuckle pin, cotter pin, and Cotter pin Rod d9 plain washer are shipped Plain washer together. ž 5 Material: Cast iron Part no. Applicable bore size (mm) A1 E1 L1 Cotter flat washer RRI UI ND NX NZ L ММ size pin size Y-04C 40 22 24 55 M14 x 1.5 13 25 12 16 ^{+ 0.3} 38 55.5 ø3 x 18ℓ Polished round 12

Y-05C	50 , 63	27	28	60	M18 x 1.5	15	27	12	$16^{+0.3}_{+0.1}$	38	55.5	ø3 x 18ℓ	Polished round 12
Y-08C	80	37	36	71	M22 x 1.5	19	28	18	28 + 0.3 + 0.1	55	76.5	ø4 x 25ℓ	Polished round 18
Y-10C	100	37	40	83	M26 x 1.5	21	38	20	30 ^{+0.3} _{+0.1}	61	83	ø4 x 30ℓ	Polished round 20

Rod End Nut


×30° -	d
R-	
B^{-}	
H .	В

Material:	Rolled	steel

Part no.	Applicable bore size (mm)	d	н	в	с	D
NT-04	40	M14 x 1.5	8	22	25.4	21
NT-05	50 , 63	M18 x 1.5	11	27	31.2	26
NT-08	80	M22 x 1.5	13	32	37	31
NT-10	100	M26 x 1.5	16	41	47.3	39

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

Proper Auto Switch Mounting position (Detection at stroke end) and Its Mounting Height

Proper Auto Switch Mounting Position

Auto switch model	D-A5□, D-A3□/ D-A44// D-G39/ D-K39/	A44C G39C	D-B5□	D-F5 D-J5 D-B5 D/B64 D-F5 W D-F5 W D-F59F		50 50W 59W	D-G5□W D-K59W D-G59F D-G5□ D-K59 D-G5NTL		D-A59W		D-F5NTL		D-B59W D-Z7□/Z80 D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W D-Y7□WV	
Bore size (mm)	A	В	A	в	Α	В	A	в	A	в	A	в	A	в
40	0	1	0	1.5	3.5	7.5	0	3	1	5	8.5	12.5	0.5	4.5
	(0)	(0)	(0.5)	(0)	(6.5)	(4.5)	(2)	(0)	(4)	(2)	(11.5)	(9.5)	(3.5)	(1.5)
50	0	1	0	1.5	3.5	7.5	0	3	1	5	8.5	12.5	0.5	4.5
	(0)	(0)	(0.5)	(0)	(6.5)	(4.5)	(2)	(0)	(4)	(2)	(11.5)	(9.5)	(3.5)	(1.5)
63	0	5.5	0	6	5.5	12	1	7.5	3	9.5	10.5	17	2.5	9
	(2.5)	(1.5)	(3)	(2)	(9)	(8)	(4.5)	(3.5)	(6.5)	(5.5)	(14)	(13)	(6)	(5)
80	2	8.5	2.5	9	8.5	15	4	10.5	6	12.5	13.5	20	5.5	12
	(6)	(4)	(6.5)	(4.5)	(12.5)	(10.5)	(8)	(6)	(10)	(8)	(17.5)	(15.5)	(9.5)	(7.5)
100	4	10.5	4.5	11	10.5	17	6	12.5	8	14.5	15.5	22	7.5	14
	(7.5)	(6.5)	(8)	(7)	(14)	(13)	(9.5)	(8.5)	(11.5)	(10.5)	(19)	(18)	(11)	(10)

Note 1) (): Denotes the values of non-lube type. Note 2) D-G5⊡W, K59W, G58A and G59F can not be attached on ø40 and ø50 lube type cylinder.

Note 3) D-B5 type, D-G5 type, D-K5 type are mountable only upon a receipt of order. (Not mountable after the time of shipment)

Auto Switch Mounting Height

Auto switch model	D-B5□/B64 D-B59W D-G5□ D-K59 D-G5NTL D-G5□W D-K59W D-K59W	D-A3□ D-G39 D-K39	D-A44	D-A D-A D-A		D-F5 D-J5 D-F5 D-J5 D-F5 D-F5	i□ 5□W 59W	D-G	3⊐C 39C 39C	D-A 4	14C	D-Z70 D-Y59 D-Y71 D-Y71	P	D-Y6 D-Y7 D-Y7	
Bore size (mm)	Hs	Hs	Hs	Hs	Ht	Hs	Ht	Hs	Hw	Hs	Hw	Hs	Ht	Hs	Ht
40	38	72.5	80.5	40	31	38.5	31	73	69	81	69	30	30	30.5	30
50	43.5	78	86	43.5	35	42.5	35	78.5	77	86.5	77	34	34	35	34
63	50.5	85	93	49	42	48	42	85.5	91	93.5	91	41	41	42.5	41
80	59	93.5	101.5	55.5	50	54	50	94	107	102	107	49.5	48.5	51	48.5
100	69.5	104	112	63	57.5	62	57.5	104	121	112	121	58.5	56	59	56

Operating Range

Auto switch model		Bor	e size (r	nm)	
Auto Switch model	40	50	63	80	100
D-Z7□/Z80	8	7	9	9.5	10.5
D-A3□/A44					
D-A3□C, D-A44C	9	10	11	11	11
D-A5□/A6□	9	10			11
D-B5□/B64					
D-A59W	13	13	14	14	15
D-B59W	14	14	17	16	18
D-Y59□/Y69□ D-Y7P/Y7PV D-Y7□W/Y7□WV	8	7	5.5	6.5	6.5
D-F5□/J5□ D-F5□W/J59W D-F5NTL/F59F	4	4	4.5	4.5	4.5
D-G5□/K59 D-G5□W/K59W D-G5NTL/G59F	5	6	6.5	6.5	7
D-G39/K39 D-G39C, D-K39C	9	9	10	10	11

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion.) There may be the case it will vary substantially depending on an ambient environment.

Other than the models listed in "How to Order", the following auto switches are applicable. L

I For detailed specifications, refer to page 10-20-1.

Туре	Model	Electrical entry (Fetching direction)	Features
	D-A53/A56		
Reed	D-A64/A67	Crommet (In line)	Without
switch	D-B64	Grommet (In-line)	
	D-Z80		indicator light
	D-F59/F5P/J59		
	D-F59W/F5PW/J59W		2-color indication
Solid state	D-F5NTL	Grommet (In-line)	With timer
switch	D-G5NTL		with timer
e mien	D-Y69A/Y7PV/Y69B	Grommet	
	D-Y7NWV/Y7PWV/Y7BWV	(Perpendicular)	2-color indication
* With pre-w	ire connector is also available in	solid state auto switch	nes.

For details, refer to page 10-20-66.

I * Normally closed (NC = b contact), solid state switch (D-Y7G/Y7H type) are also

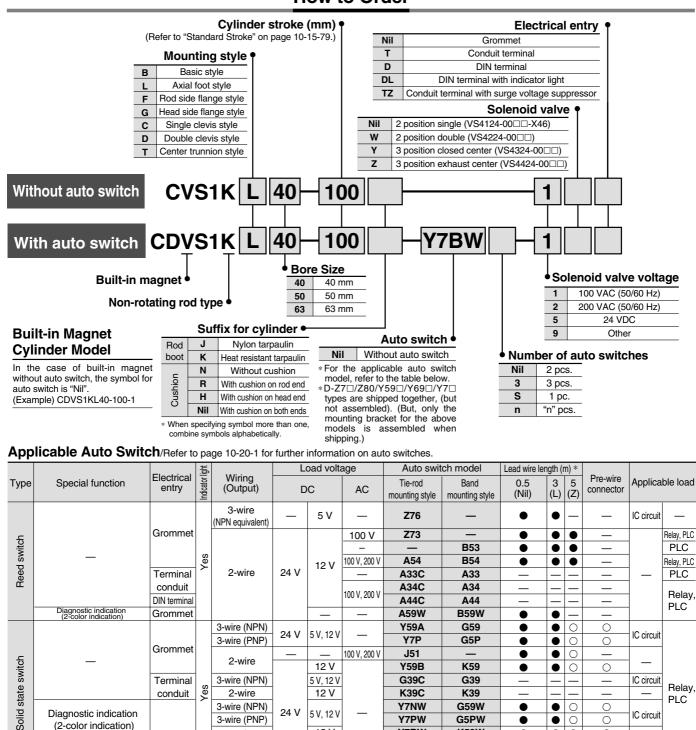
available. For details, refer to page 10-20-41.

I

I

L

Minimum Stroke for Auto Switch Mounting


	-		to Switch M				n: Nur	mber of auto switches	
Auto switch model	No. c	of auto switches mounted	Mounting brackets other than center trunnion	ø40	ø50	Center trunnion ø63	ø80	ø100	
D-A5□/A6□ D-F5□/J5□		Different sides, me side), 1	15	9	90	100	110	120	
D-F5□W/J59W D-F59F	· ·	(Same side)	$15 + 55 \frac{(n-2)}{2}$ n = 2, 4, 6, 8	90 + 55 n = 4, 8,	$\frac{(n-4)}{2}$ 12, 16	$100 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	$110 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	$120 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	
		ifferent sides, ne side)	20	90	90	100	110	120	
D-A59W	n ((Same side)	$20 + 55 \frac{(n-2)}{2}$ n = 2, 4, 6, 8	90 + 55 n = 4, 8,		$100 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16			REA
	2 (Г	1 Difforent sides	15 90			100	110	120	
D-F5NTL		Different sides, ne side), 1	25		10 F (n-4)	120	130	140	REC
	n (n (Same side) $25 + 55 \frac{(n-2)^2}{2}$ n = 2, 4, 6, 8		110 + 55 n = 4, 8,	12, 16…	$120 + 55 \frac{(n-4)}{2}$ n = 4, 8, 12, 16			C□X
D-B5⊡/B64	2	Different sides Same side	15 75	90	90	100 100		10 10	C□Y
D-B5⊟/B64 D-G5⊡/K59									
D-G5⊡W D-K59W	n	Different sides	$ \begin{array}{c} 15 + 50 & \frac{(n-2)}{2} \\ n = 2, 4, 6, 8 \\ \hline 75 + 50 & (n-2) \end{array} $	90 + 50 n = 4, 8, 90 + 50		$ \begin{array}{r} 100 + 50 \ \frac{(n-4)}{2} \\ n = 4, 8, 12, 16 \\ 100 + 50 \ (n-2) \end{array} $	110 + 5 n = 4, 8, 110 + 50	, 12, 16 0 (n – 2)	MQM
D-G59F D-G5NTL		Same side	n = 2, 3, 4…	n = 2, 4,	, 6, 8,	n = 2, 4, 6, 8…	n = 2, 4,	ł, 6, 8, …	RHC
		1 Different eidee	10		90	100		10	
	2	Different sides Same side	75	90	90 90	100 100	11	10 10	MK(2)
D-B59W		Different sides	$20 + 50 \frac{(n-2)}{2}$ n = 2, 4, 6, 8	90 + 50 n = 4, 8,) (<u>n - 4)</u> 12, 16…	$100 + 50 \frac{(n-4)}{2}$ n = 4, 8, 12, 16	110 + 5 n = 4, 8,	50 (<u>n - 4)</u> , 12, 16…	RSGQ
	n	Same side	$\begin{array}{c} 75 + 50 \ (n - 2) \\ n = 2, 3, 4 \cdots \end{array}$	90 + 50 n = 2, 4) (n – 2)	$\begin{array}{c} 100 + 50 (n - 2) \\ n = 2, 4, 6, 8 \end{array}$	110 + 50		RS ^H
	E	1	15	90		100	11	10	nυA
	2	Different sides Same side	35 100	10	00	100 100		00 00	RZQ
D-A3⊡ D-G39		Different sides	$35 \pm 30 (n - 2)$	100 + 30 n = 2, 4	0 (n – 2)	100 + 30 (n - 2) n = 2, 4, 6, 8	100 + 30	30 (n – 2) 4, 6, 8…	MIs
D-K39	n	Same side	$\begin{array}{c} 11 = 2, 3, 4 \cdots \\ 100 + 100 (n - 2) \\ n = 2, 3, 4 \cdots \end{array}$			(n-2) $n = 2, 4, 6, 6$, , , , ,	CEP1
		1 Different sides	10	75	-	80		90	
	2	Different sides Same side	<u>35</u> 55	10		100 80		00	CE1
D-A44		Different sides	$35 \pm 30 (n - 2)$	75 + 30 n = 2, 4) (n – 2)	80 + 30 (n - 2) n = 2, 4, 6, 8···	100 + 30	30 (n – 2) 4, 6, 8…	CE2
D- A44	n	Same side	55 + 50 (n - 2) n = 2, 3, 4	75 + 50 n = 2, 4) (n – 2)	80 + 50 (n - 2) n = 2, 4, 6, 8	90 + 50	0 (n– 2) 4, 6, 8…	ML2B
!			10	75		80	9	90	WLZD
	2	Different sides Same side	20 100	10 10		100 100		00 00	C _G ^J 5-S
D-A3⊡C D-G39C		Different sides	20 + 25 (n - 2)	100 + 35 n = 2, 4	5 (n – 2)	$\begin{array}{c} 100 \\ 100 + 35 (n - 2) \\ n = 2, 4, 6, 8 \end{array}$		85 (n – 2)	CV
D-K39C	n	Same side	$\begin{array}{c} 100 + 100 (n - 2) \\ n = 2, 3, 4, 5 \cdots \end{array}$			(n-2) $n = 2, 4, 6,$			MVGQ
		1	10	75		80		90	
	2	Different sides Same side	20 55	75		80 80		90 90	CC
1		Different sides	$20 \pm 35 (n - 2)$	75 + 35 n = 2, 4	5 (n – 2)	80 + 35 (n - 2) n = 2, 4, 6, 8····	90 + 35	5 (n – 2) 4, 6, 8…	RB
D-A44C			55 + 50 (n - 2)) (n – 2)	80 + 50 (n - 2)	90 + 50	0 (n – 2)	
D-A44C	n	Same side			ີ ຊ ຊ		· · · · · · · · · · · · · · · · · · ·	" n a	
D-A44C	n	Same side	$n = 2, 3, 4 \cdots$ 10	n = 2, 4	4, 6, 8… 75	n = 2, 4, 6, 8… 80		4, 6, 8… 90	J
D-Z7□/Z80	2 (D		n = 2, 3, 4 10 15	n = 2, 4 75 80	75 85	80 90	95	105	0 D-
	2 (D	1 Different sides,	n = 2, 3, 4 10	n = 2, 4	75	80	9	90	
D-Z7□/Z80 D-Y59□/Y7P	2 (D Sa 2 (D	1 Different sides, ame side), 1	n = 2, 3, 4 10 15 15 + 40 $\frac{(n-2)}{2}$	$n = 2, 4, 75$ 80 80 80 + 40 $\frac{(n-4)}{2}$	$ \frac{85}{85 + 40} \frac{(n-4)}{2} = 12, 16 $ $ \frac{1}{5} = 12, 16 $	80 90	95 95 + 40 $\frac{(n-4)}{2}$	$ \begin{array}{r} 105 \\ 105 + 40 \frac{(n-4)}{2} \end{array} $	D-

Data

Valve Mounted Cylinder: Non-rotating Rod Type **Double Acting, Single Rod** Series CVS1K

How to Order

Non-lube Type: ø40, ø50, ø63

(Example) A54 * Solid state switches marked with "O" are produced upon receipt of order.

G39C

K39C

Y7NW

Y7PW

Y7BW

F5NT

F59F

G39

K39

G59W

G5PW

K59W

G5NT

G59F

• 0

. \bigcirc

• 0

• С

•

IC circui

IC circuit

IC circuit

 \bigcirc

0

0

 \cap

Relay,

PLC

3 m L (Example) A54L 5 m Z (Example) A54Z

3-wire (NPN)

2-wire

3-wire (NPN)

3-wire (PNP)

2-wire

3-wire (NPN)

4-wire (NPN)

• Since there are other applicable auto switches than listed, refer to page 10-15-76 for details.

For details about auto switches with pre-wire connector, refer to page 10-20-66.

Terminal

conduit

Grommet

0.5 m Nil

Diagnostic indication

(2-color indication)

With timer

With diagnostic outp (2-color indication

* Lead wire length symbols:

5 V, 12 V

12 V

5 V, 12 V

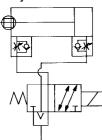
12 V

5 V, 12 V

24 V

Valve Mounted Cylinder: Non-rotating Rod Type Double Acting, Single Rod Series CVS1K

Speed controller installed


Operation type can be changed to rod extended when energized or rod retracted when energized.

A selection of solenoid valves is possible.

Single, double and 3 position solenoid valves are mountable.

Made to Order Specifications (For details, refer to page 10-21-1.)

Symbol	Specifications
-XA🗆	Change of rod end shape
-XC7	Tie-rod, cushion valve, and tie-rod nut and similar parts made of stainless steel
-XC14	Change of trunnion bracket mounting position
-XC15	Change of tie-rod length
-XC27	Double clevis pin and double knuckle pin made of stainless steel
-XC28	Compact flange made of SS400

Specifications

specifications										
Applicable bore size (m	m)	40	D	50	63					
Туре				Non-lube						
Action		Double acting								
Fluid		Air								
Proof pressure				1.5 MPa						
Maximum operating pressu	ire			1.0 MPa						
Minimum operating pressu	re			0.05 MPa						
Ambient & fluid temperature	e		-10 to	o 60°C (No freezin	g)	R				
Cushion				Air cushion		RE				
Thread tolerance				JIS Class 2		R				
Stroke length tolerance			Up to 25	i0 st $^{\scriptscriptstyle +1.0}_{\scriptscriptstyle 0}$, 251 to 6	00 st + 1.4	C				
Effective area of valve (Cv	factor)		Sing	le: 26.5 mm² (1.47	<i>'</i>)					
Port size				Rc 1/4						
Lubrication			Not ı	equired (Non-lube	e)	M				
Electrical entry	Grommet, Conduit terminal, DIN terminal, DIN terminal with indicator light, Conduit terminal with surge voltage suppressor									
Rod non-rotating accuracy		±0.5°								
Allowable rotational torque		0.44 N·m or less								
Piston speed		50 to 500 mm/s*								
Mounting style		Basic style, Axial foot style, Rod side flange style, Head side flange style, Single clevis style, Double clevis style, Center trunnion style								
Operate within the range of a lote) Refer to page 10-15-80		energy.								
Allowable Kinetic Er	•				(J)	RZ				
Bore size (mm)		40		50	63	Μ				
Allowable kinetic energy		2.4		4.4	7.8					
Solenoid Valve Spec	cificati	ons		·		CE				
Applicable solenoid valve m		VS4□24								
Coil rated voltage	100/200 VAC (50/60 Hz), 24 VDC									
Allowable voltage	-15 to 10% of the rated voltage									
Coil insulation			Class B	or equivalent (13	 0°C)	N/I				
			50 Hz	10	0 VA	ML				
		Inrush	60 Hz	0	0.1/A					

Power consumption Note)

Apparent power Note)

Note) Rated voltage

Standard Stroke

Bore size (mm)	Standard stroke (mm)					
40	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500*					
50 , 63	25, 50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600*					

AC

DC

Holding

Please consult with SMC for longer strokes than the strokes marked with.

Related things about auto switches and the mounting brackets part numbers are the same as Series CVS1. For details, refer to pages 10-15-75 to 10-15-77.

Rod Boot Material

13.2 W

60 Hz

50 Hz

60 Hz

Symbol	Rod boot material	Maximum ambient temperature					
J	Nylon tarpaulin	70°C					
Κ	Heat resistant tarpaulin	110°C*					
Maximum ambient temperature for the r boot itself.							

90 VA

20 VA

14 VA

C^J_G5-S

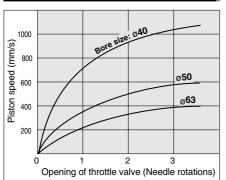
CV

MVGQ

CC

RB

J


D-

-X

SMC

Series CVS1K

Opening Range of Throttle Valve and Driving Speed

Handling

- 1. Adjusting of the piston speed
- 2. Interchange between the spring return style and the spring extend style
- **3. Manual override** Since the operations above **1.** to **3.** are the same as Series CVS1, refer to page 10-15-69.

Conditions: Operating pressure 0.5 MPa, Horizontal mounting, No load, Spring return side

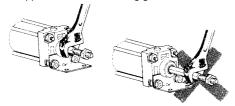
The actuating speeds above are for reference.

Accessory

	Mounting	Basic style	Foot style	Rod side flange style	Head side flange style	Single clevis style	Double * clevis style	Center trunnion style
Standard equipment	Rod end nut	•	•	•		•	•	●
Stan	Clevis pin	-		—	—	—	•	—
	Single knuckle joint	•	•	•			•	
	Double knuckle joint * (With pin)	•	•	•	•	•	•	•
	With rod boot	•	•	•	•	•	•	•

* Pin, plain washer and cotter pin are shipped together with double clevis and double knuckle joint.

APrecautions


Be sure to read before handling. For Safety Instructions and Actuator Precautions, refer to pages 10-24-3 to 6. For Series CVSK, refer to page 10-15-53.

Operating Precautions

Caution

1. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.

 If rotational torque is applied, the non-rotating guide will become deformed, causing a loss of non-rotating accuracy. Also, to screw a bracket or a nut onto the threaded portion at the end of the piston rod, make sore the retract the piston rod entirely, and place a wrench on the parallel sections of the rod that protrudes. To tighten, take precautions to prevent the tightening torque from being applied to the non-rotating guide.

Disassembly/Replacement

▲ Caution

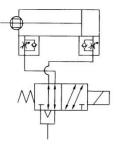
1. When replacing rod seals, please contact SMC.

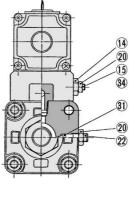
Air leakage may be happened, depending on the position in which a rod seal is fitted. Thus, please contact SMC when replacing them.

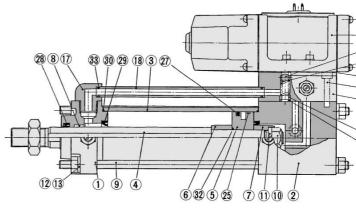
Weight (kg) Bore size (mm) 40 50 63 Basic style 2.48 3.04 4.12 Foot style 2.65 3.24 4.41 Rod side flange style 2.88 3.64 5.08 Basic Head side flange style 2.98 3.78 5.08 weight 2.74 3.48 4.87 Single clevis style 2.73 3.46 4.89 Double clevis style 3.08 5.46 Trunnion style 3.78 Additional weight per each 50 mm of stroke 0.22 0.37 0.28 Single knuckle 0.23 0.26 0.26 Accessory bracket 0.37 0.43 0.43 Double knuckle (With pin)

Calculation: (Example) CVS1KL40-100-1

Standard weight······2.65 (kg)
 Promium weight ·····2.65 (kg)


Premium weight0.22 (kg/50 st)


- Cylinder stroke------100 (st) 2.65 + 0.22 x 100 ÷ 50 = 3.09 kg
- * Add 0.34 kg for the double solenoid style.



Construction

Lube type

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Matt black painted
2	Head cover	Aluminum alloy	Matt black painted
3	Cylinder tube	Aluminum alloy	Hard anodized
(4)	Piston rod	Carbon steel	Hard chrome plated
(5)	Piston	Aluminum alloy	Chromated
6	Cushion ring A	Rolled steel	Zinc chromated
\bigcirc	Cushion ring B	Rolled steel	Zinc chromated
8*	Non-rotating guide	Oil impregnated sintered alloy	
9	Tie-rod	Carbon steel	Chromated
10	Piston nut	Rolled steel	Zinc chromated
1	Spring washer	Steel wire	Zinc chromated
12	Tie-rod nut	Carbon steel	Black zinc chromated
(13)	Spring washer	Steel wire	Black zinc chromated

* Parts of the non-rotating guide, check spring, check ball, valve port, cushion packing and piston gasket are not replaceable.

Basic Style: CVS1K

63

58

217

52

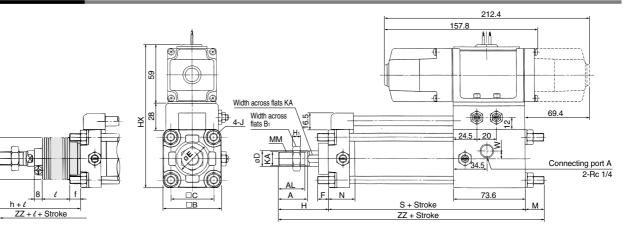
11.2 66

1/4 stroke

No.	Description	Material	Note
(14)	Needle guide	Carbon steel	Electroless nickel plated
(15)	Speed adjustment needle	Carbon steel	Electroless nickel plated
(16)*	Check spring	Steel wire	Zinc chromated
17	Guide tube fitting	Aluminum alloy	Platinum silver
(18)	Pipe	Carbon steel tube	Chromated
(19)*	Check ball	Polyurethane rubber	9/32
20	lock nut	Carbon steel	Nickel plated
21)	Sub-plate	Aluminum alloy	Platinum silver
22	Cushion valve	Rolled steel	Electroless nickel plated
23*	Valve port	Brass	
24)	Solenoid valve	—	Refer to the notes below.*
25	Wear ring	Resin	
26	Hexagon socket head cap screw	Chromium molybdenum steel	Black zinc chromated

Note 1) Add "X46" at the end of the part number for single solenoid type.

Note) Add "X46" at the end of the part number for single solenoid type.


* How to order solenoid valves

VS4
24- Voltage Electrical entry

No.	Description	Material	Note
27	Piston seal	NBR	
28	Rod seal	NBR	
29 *	Cushion seal	NBR	
30	Cylinder tube gasket	NBR	
31)	Cushion valve seal	NBR	
32 *	Piston gasket	NBR	
33	Pipe gasket	NBR	
34	Speed adjustment valve seal	NBR	
35	Gasket	NBR	
36	Valve port gasket	NBR	

Replacement Parts: Seal Kit

Bore size (mm)	40	50	63					
Seal kit no.	CVS1K40-PS	CVS1K50-PS	CVS1K63-PS					
Contents	Set of nos. above 27, 28, 30, 31, 33, 36							
* Seal kit includes 20, 28, 30, 31, 33, 36. Order the								

Bore size (mm)	Stroke ra (mm)		A	AL	в	B1	с	D	E	F	Hı	нх	J	KA	м	ММ	Ν	S	w	
40	Up to 5	00	30	27	60	22	44	16	32	10	8	147	M8 x 1.25	14	19.4	M14 x 1.5	27	130.6	8	[
50	Up to 6	00	35	32	70	27	52	20	40	10	11	157	M8 x 1.25	18	16.4	M18 x 1.5	30	133.6	8	Ľ
63	Up to 6	00	35	32	86	27	64	20	40	10	11	173	M10 x 1.25	18	18.4	M18 x 1.5	31	140.6	8	Ē
Bore size	ize Without rod boot With rod boot With rod boot								Vithout rod boot With rod boot						-					
(mm)	н	ZZ	е	f	h		l		ZZ	External dimensions of each mounting bracket other than basic style at						are the				
40	51	201	43	11.2	59	1/4	1/4 stroke 209			same, except KA dimension. Refer to pages 10-15-71 to 10-15-73.										
50	58	208	52	11.2	66	1/4	4 stroke		216	• For accessory, refer to page 10-15-74.										

SMC

225

24

19

16

(35)

26 21

23

36

RE^AB

REC

C 🗆 X

CUY

MQM

RHC

MK(2)

RSGQ

RS^H

RZQ

MIs

CEP1

CE1

CE2

ML2B

C_G^J5-S

CV

MVGQ

CC

RB

J

D-

-X

20-

Data