

Compact Guide Cylinder with Lock Series MLGP ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

Drop prevention when the pressure of air source is decreased or the residual pressure is released.

Drop prevention for press fitting jig

Drop prevention for lifter

Holding a clamped condition

SMC

Drop prevention is possible within the entire stroke at any position

GSMC

Wide Variations from ø20 to ø100

	Cariaa	Deering	Locking	Bore size	Standard stroke (mm)									
	Series	Беаппу	direction	(mm)	20	25	30	40	50	75	100	125	150	175
Number of State				20	•		•	•			•	•	•	•
				25										
A PLAN		Slide	Extension	32		•			•	•	•	•	•	•
TTON/191		bearing	Locking	40										
APRIL 1		Ball		50		•			•	•	•	•	•	•
11111		busning	Retraction	63										
1000		beamig	LOCKING	80		•	N.		•	•	•	•	•	•
111111				100										

Specific Product Precautions 1

Be sure to read before handling.

Selection

\land Warning

- 1. Do not use this cylinder for intermediate stops.
- This cylinder is designed for locking against inadvertent movement from a stationary condition. Do not perform intermediate stops while the cylinder is operating, as this will shorten its service life
- 2. Select the correct locking direction, as this cylinder does not generate holding force opposite to the locking direction.

The extension locking does not generate holding force in the cylinder's retracting direction, and the retraction lock does not generate holding force in the cylinder's extending direction (free).

3. Even when locked, there may be stroke movement of about 1.0 mm in the locking direction due to external forces such as the weight of the workpiece.

Even when locked, if air pressure drops, stroke movement of about 1.0 mm may be generated in the locking direction of the lock mechanism due to external forces such as the workpiece weight.

4. When in the locked state, do not apply a load accompanied by an impact shock, strong vibration or turning force, etc.

When used as a stopper, be careful that the workpiece does not collide with the cylinder in a locked condition.

5. Operate so that load weight, cylinder speed and eccentric distance are within the limiting ranges in the specifications and model selection graphs.

If the products are used beyond the limiting range, it may lead to a reduced service life or cause damage to the machinery. (Refer to pages 9-11-21 and 9-11-22 and "How to Select" for specifications.)

Pneumatic Circuit

A Warning

1. Do not use 3 position valves.

The lock may be released due to inflow of the unlocking pressure.

- **2. Install speed controllers for meter-out control.** If it is used in meter-in control, it may result in malfunction.
- 3. Be careful of reverse exhaust pressure flow from a common exhaust type valve manifold. Since the lock may be released due to reverse exhaust pressure flow, use an individual exhaust type manifold or single type valve.
- **4.** Branch off the compressed air piping for the lock unit between the cylinder and the speed controller. Note that branching off in another section can cause a reduction in service life.
- 5. Perform piping so that the side going from the piping junction to the lock unit is short.

If the lock unit side piping is longer than the cylinder port side, this may cause unlocking malfunction and reduce the life of the lock, etc.

Pneumatic Circuit

6. When used as a stopper, be careful that the workpiece does not collide with the cylinder in a locked condition.

If the workpiece were bumped into the cylinder in the locked state, it could be unlocked by shock or the locking mechanism and the piston rod could be damaged, that could shorten its service life substantially or result in breakage.

MLGP□-□-B: When used as stopper

Specific Product Precautions 2

Be sure to read before handling.

Mounting

A Warning

1. Take precautions to prevent your fingers or hands from getting caught between the plate and the cylinder body or the lock body.

Be very careful to prevent your hands or fingers from getting caught in the gap between the cylinder body and the lock body when air is applied.

A Caution

1. Be sure to connect the load to the plate section with the lock in an unlocked condition.

If this is done in the locked state, it may cause damage to the lock mechanism.

Sizes \emptyset 20 through \emptyset 32 have a built-in holding function for the unlocked state, allowing the unlocked condition to be maintained even without an air supply. For \emptyset 40 through \emptyset 100, simply connect piping to the unlocking port and supply air pressure of 0.2 MPa or more.

2. When performing mounting adjustment, supply air pressure only to the unlocking port.

3. Cylinder bottom

Since the guide rods project from the bottom of the cylinder at the end of the retraction stoke, provide bypass ports in the mounting surface, as well as holes for the hexagon socket head mounting screws, when the cylinder is mounted from the bottom. Furthermore, when subjected to impact in use as a stopper, etc., screw the mounting bolts in to a depth of 2d or more.

Bore size	Α	В	с	[)	Hexagon socket
(mm)	(mm)	(mm)	(mm)	MLGPM	MLGPL	head cap screw
20	72	24	54	14	12	M5 x 0.8
25	82	30	64	18	15	M6 x 1.0
32	98	34	78	22	18	M8 x 1.25
40	106	40	86	22	18	M8 x 1.25
50	130	46	110	27	22	M10 x 1.5
63	142	58	124	27	22	M10 x 1.5
80	180	54	156	33	28	M12 x 1.75
100	210	62	188	39	33	M14 x 2.0

Piping

\land Warning

Depending on the operating condition, change the position of plugs for the piping port.

1. For M5

2. For Rc thread

Tighten with proper tightening torques below. Also, use pipe tape on the plug.

Connection thread size	Proper tightening torque (N·m)
R 1/8	7 to 9
R 1/4	12 to 14
R 3/8	22 to 24

Preparing for Operation

🗥 Warning

1. Before starting operation from the locked position, be sure to restore air pressure to the B port in the pneumatic circuit.

It is very dangerous to apply pressure to the A port with the B port in an unpressurized state, because the cylinder will move suddenly when unlocked.

2. Since size ø20 through ø32 are shipped in an unlocked condition maintained by the unlocking bolt, be sure to remove the unlocking bolt following the steps below. If the cylinder is used without removing the unlocking bolt, the lock mechanism will not function. Since a holding function for the unlocked state is not available for sizes ø40 through ø100, they can be used as shipped.

For ø20 through ø32 only

- 1) Confirm that there is no air pressure inside the cylinder, and remove the dust cover (1).
- Supply air pressure of 0.2 MPa or more to unlocking port (2) shown in the drawing on the left.
- 3) Remove the unlocking bolt (3) with a hexagon wrench (width across flats 2.5).

After tightening by hand, tighten additional 1/6 to 1/4 rotation with a tightening tool.

Specific Product Precautions 3

Be sure to read before handling.

Manually Unlocking

A Warning

1. Do not perform unlocking while an external force such as a load or spring force is being applied.

This is very dangerous because the cylinder will move suddenly. Take the following steps.

- 1) Release the lock after restoring the air pressure in the B line of the pneumatic circuit to operating pressure, and then reduce the pressure gradually.
- 2) In the case air pressure cannot be used, release the lock after preventing cylinder movement with a lifting device such as a jack.
- 2. After confirming safety, operate the manual release following the steps shown below.

Carefully confirm that personnel are not inside the load movement range, etc., and that there is no danger even if the load moves suddenly.

Manually unlocking

For ø20 to ø32

Extension locking

 Remove the dust cover.
 Screw a manual unlocking bolt (a bolt of M3 x 0.5 x 15¢ or more commercially available) into the lock ring threads as shown above, and lightly push the bolt in the direction of the arrow (head side) to unlock. Retraction locking

Remove the dust cover.
 Screw a manual unlocking bolt (a bolt of M3 x 0.5 x 15t or more commercially available) into the lock ring threads as shown above, and lightly push the bolt in the direction of the arrow (rod side) to unlock.

For normal operation, remove the manual unlocking bolt. It will cause lock malfunction.

For ø40 to ø100

Extension locking

- Remove the dust cover.
 Insert a flat head screwdriver on the rod side of the manual unlocking lever as shown in the figure above, and lightly push the screwdriver in the direction of the arrow (rod side) to unlock.
- Retraction locking
- Remove the dust cover.
 Insert a flat head screwdriver on the head side of the manual unlocking lever as shown in the figure above, and lightly push the screwdriver in the direction of the arrow (head side) to unlock.

Holding the Unlocked State (ø20 through ø32)

▲ Caution

1. In order to hold the locked state, be sure to follow the steps below after confirming safety.

- 1) Remove the dust cover (1).
- 2) Supply air pressure of 0.2 MPa or more to the unlocking port(2) shown below and unlock.
- 3) Screw the attached hexagon socket head cap bolt (3) (\emptyset 20, \emptyset 25: M3 x 0.5 x 5 ℓ , \emptyset 32: M3 x 0.5 x 10 ℓ), into the lock ring to hold the unlocked condition.
- 2. To use the lock mechanism again, be sure to remove the unlocking bolt.

When the unlocking bolt is screwed in, the lock mechanism does not function. Remove the unlocking bolt according to the steps prescribed in the section of "Preparing for Operation".

Maintenance

\land Caution

1. In order to maintain good performance, operate with clean unlubricated air.

If lubricated air, compressor oil or drainage, etc., enter the cylinder, there is a danger of sharply reducing the locking performance.

2. Do not apply grease to the piston rod.

There is a danger of sharply reducing the locking performance.

3. ø20 to ø32, a ø12 silver seal is labeled on the one surface of the lock body (on the surface opposite from the unlocking port). The seal is meant for dust prevention, but even if it is peeled off, there would be no problem functionally.

4. Never disassemble the lock unit.

It contains a heavy duty spring which is dangerous and there is also a danger of reducing the locking performance.

Series MLGP **Model Selection**

Precautions on Model Selection

A Caution

- 1. In order that the originally selected maximum speed shall be not exceeded, be certain to use a speed controller to adjust the total movement distance of the load so that movement takes place in no less than the applicable movement time.
- 2. For an intermediate stroke product with spacers installed, select using the base model stroke.

Step (1) Find the maximum load speed V.		
Find the maximum load speed V [mm/s] with following formula (1) below.	V1: Average load speed [mm/s]	MILOU
The maximum load speed V [mm/s] is approximately equal to $V_1 \ge 1.4 \cdots (1)$	$V_1 = st/t$	CNG
	st: Load transfer distance [mm]	CING
	t: Load transfer time [s]	MNR
Stop (2) Find the hore size		CNA

Step (2) Find the bore size.

1. For vertical mounting

- 1) From Table 1, find applicable selection graphs based on the maximum load speed "V", mounting orientation, and bearing type. 2) From the graphs chosen in (1), select the appropriate graph based on the stroke, and then find the intersecting point of the load weight "m" and eccentric distance "l1".
- 3) Compare the intersecting point with the line chart for the operating pressure "P". Select the bore size from the line chart above the intersecting point.

2. For horizontal mounting

- 1) From Table 1, find applicable selection graphs based on the maximum load speed "V" and bearing type.
- 2) From the graphs chosen in (1), select the appropriate graph based on the distance "t2" between the plate and load center of gravity, then find the intersecting point of the load weight "m" and stroke.
- 3) Compare the intersecting point with the line chart. Select the bore size from the line chart above the intersecting point.

Selection Conditions/Table (1)

	Upward	Ver facing	tical Downwai	rd facing	Hori	zontal
Mounting orientation	<i>h</i> = Eccentric distance		$\ell_{1} = Eccentric distant$		<pre></pre>	between and load gravity
Maximum load speed V	50 to 200 mm/s	201 to 400 mm/s	50 to 200 mm/s	201 to 400 mm/s	50 to 200 mm/s	201 to 400 mm/s
Graph (Slide bearing type)	(1), (2)	(3), (4)	(13), (14)	(15), (16)	(25), (26)	(27), (28)
Graph (Ball bushing bearing type)	(5) to (8)	(9) to (12)	(17) to (20)	(21) to (24)	(29), (30)	(31), (32)

CL

CL1

CNS

CLS

CLQ

MLGP

RLQ

MLU

ML1C

D-

-Х

20-

Data

Selection Example 1 (Vertical upward mounting)

Selection conditions Mounting: Vertical upward facing Bearing type: Ball bushing Stroke: 50 mm Load transfer time t: 0.5 s Load weight m: 15 kg Eccentric distance L1: 50 mm Operating pressure P: 0.5 MPa

- Step 1: Find the maximum load speed "V" from formula (1). Based on the stroke (load transfer distance) of 50 mm and load transfer time of 0.5 s, the maximum load speed is approximately equal to 50/0.5 x 1.4, which is approximately 140 mm/s.
- Step 2: Based on the maximum load speed found in Step 1, mounting orientation, and guide type, graphs (5) to (8) are selected. Then, based on the 50 mm stroke, graph (7) is selected from the group. Find the intersecting point of the load weight of 15 kg and the eccentric distance of 50 mm. Since the operating pressure is 0.5 MPa, the bore size of ø80 mm, model MLGPL80-50-B, is selected.

Selection Example 2 (Horizontal mounting)

Selection conditions

- Mounting: Horizontal
- Bearing type: Slide bearing
- Stroke: 100 mm
- Load transfer time t: 0.5 s
- Load weight m: 6 kg

Eccentric distance between the plate and load center of gravity l2: 50 mm

Operating pressure P: 0.4 MPa

- Step 1: Find the maximum load speed "V" from formula (1). Based on the stroke (load transfer distance) of 100 mm and load transfer time of 0.5 s, the maximum load speed is approximately equal to 100/0.5 x 1.4, which is approximately 280 mm/s.
- Step 2: Based on the maximum load speed found in Step 1, mounting orientation, and guide type, graphs (27) and (28) are selected. Then, based on the distance of 50 mm between the plate and load center of gravity, graph (27) is selected from the two graphs. Find the intersecting point of the load weight of 6 kg and the 100 mm stroke. The bore size of ø40 mm, model MLGPM40-50-□, is selected.

Vertical Upward Mounting (Slide bearing)

Operating pressure 0.4 MPa
 Operating pressure 0.5 MPa or more

MLGPM20 to 100

Vertical Upward Mounting (Ball bushing bearing)

Operating pressure 0.4 MPa ---- Operating pressure 0.5 MPa or more

MLGPL20, 25

MLGPL32 to 100

(8) Over 50 Stroke V = 200 mm/s

Vertical Upward Mounting (Ball bushing bearing)

- Operating pressure: 0.4 MPa

Vertical Downward Mounting (Slide bearing)

----- Operating pressure 0.4 MPa ---- Operating pressure 0.5 MPa or more

MLGPM20 to 100

(16) Over 50 Stroke V = 400 mm/s

Compact Guide Cylinder with Lock Series MLGP

Vertical Downward Mounting (Ball bushing bearing)

----- Operating pressure 0.4 MPa ---- Operating pressure 0.5 MPa or more

Vertical Downward Mounting (Ball bushing bearing)

MLGPL20/25

MLGPL32 to 100

Operating pressure: 0.4 MPa

Horizontal Mounting (Slide bearing)

MLGPM20 to 100

SMC

Horizontal Mounting (Ball bushing bearing)

(29) $\ell_2 = 50 \text{ mm} \text{ V} = 200 \text{ mm/s}$

(30) $\ell_2 = 100 \text{ mm} \text{ V} = 200 \text{ mm/s}$

10

25 26

50 51

Stroke (mm)

100

200

300

10

25 26

50 51

Stroke (mm)

100

200

16

Horizontal Mounting (Ball bushing bearing)

SMC

Operating Range when Used as Stopper

\land Warning

- 1. When using the cylinder as a stopper, do not allow workpieces to collide in the locked condition. If workpieces collide in the locked condition, the lock may disengage due to the shock, or the lock mechanism and piston rod may be damaged, causing a dramatic decrease of the product life and/ or further damage.
- 2. Model MLGPL (Ball bushing bearing) cannot be used as a stopper.
- When MLGPL (Ball bushing bearing) is used as a stopper, the impact will cause damage to the bearing unit and guide rod.
- 3. Adopt the pneumatic circuit on page 9-11-4 when it's used as a stopper, so that workpiece does not collide in a lock state.

A Caution

- 1. When using as a stopper, select a model with 30 stroke or less for bore sizes ø20 and ø25, and 50 stroke or less for bore sizes ø32 to ø100.
- 2. When selecting a model with a longer l dimension, be sure to choose a bore size which is sufficiently large.

Bore size ø20, ø25/MLGPM20/25 (Slide bearing)

Bore size ø32 to ø100/MLGPM32 to 100 (Slide bearing)

Compact Guide Cylinder with Lock Series MLGP

CL CL1 MLGC CNG MNB CNA CNS CLS CLQ MLGP RLQ MLU ML1C D--X 20-Data

Compact Guide Cylinder with Lock Series MLGP ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

Applicable Auto Switch/Refer to page 9-15-1 for further information on auto switches.

	0	Special Electrical		diastor Miring		Load voltage		Auto swit	Auto switch model		Lead wire length (m)*								
Туре	function	entry	light	(Output)	(Output) DC		DC AC F		In-line	0.5 (Nil)	3 (L)	5 (Z)	connector	Applicat	ole load				
Reed switch		Crommot	Vac	3-wire (NPN equivalent)	—	5 V	_	—	Z76	•	•	Ι	_	IC circuit	_				
	—	Giommet	163	2-wire	24 V	12 V	100 V	—	Z73	•	•	•	—	—	Relay, PLC				
				3-wire (NPN)	_	5 V 12 V		Y69A	Y59A	•	•	0	0	IC					
	-	-		3-wire (PNP)				Y7PV	Y7P	•	•	0	0	circuit					
				2-wire							12 V	v	Y69B	Y59B	•	•	0	0	_
Solid state			Grommet Yes	3-wire (NPN) 3-wire (PNP)	24.14	4 V 5 V 12 V		Y7NWV	Y7NW	•	•	0	0	IC	Relay,				
switch	Diagnostic indication (2-color indication)	Grommet			24 V		12 V		Y7PWV	Y7PW	•	•	0	0	circuit	PLC			
					1							Y7BWV	Y7BW	•	•	0	0		
	Water resistant (2-color indication)			2-wire		12 V		_	Y7BA	_	•	0	0	_					
	Magnetic field resistant (2-color indication)									_		_	P5DW	—	•	•	0		

* Lead wire length symbols: 0.5 m Nil (Example) Y69A

3 m ······ L (Example) Y69AL 5 m ····· Z (Example) Y69AZ

* Solid state switches marked with "O" are produced upon receipt of order. \ast P5DW type can only be mounted only on bore sizes ø40 through ø100.

• Since there are applicable auto switches other than the listed above, refer to page 9-11-29.

• For details about auto switches with pre-wire connector, refer to page 9-15-68.

Compact Guide Cylinder with Lock Series MLGP

Cylinder Specifications

Action	Double acting
Fluid	Air
Proof pressure	1.5 MPa
Maximum operating pressure	1.0 MPa
Minimum operating pressure	0.2 MPa ^{Note)}
Ambient and fluid temperature	-10 to 60°C (No freezing)
Piston speed	50 to 400 mm/s
Cushion	Rubber bumper on both ends
Lubrication	Non-lube
Stroke length tolerance	+1.5 mm

Note) When the unlocking air and cylinder operating air are not common, the minimum operating pressure is 0.15 MPa. (The minimum operating pressure for the cylinder alone is 0.15 MPa.)

Lock Specifications

Bore size (mm)	20	25	32	40	50	63	80	100		
Lock operation		Spring locking (Exhaust locking)								
Unlocking pressure				0.2 MPa	or mor	е				
Lock starting pressure	0.05 MPa or less									
Locking direction	Or	One direction (Extension locking, Retraction locking)								
Maximum operating pressure			1.0 MPa							
Unlocking port size	M5 x 0.8			_	Rc 1/8	_		Rc 1/4		
Holding force (Maximum static load) (N)	157	245	402	629	982	1559	2513	3927		

Standard Stroke

Bore size (mm)	Standard stroke (mm)
20, 25	20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350
32 to 80	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350
100	50, 75, 100, 125, 150, 175, 200, 250, 300, 350

Manufacture of Intermediate Stroke

Description	Spacer installation type Spacers are installed in the standard stroke cylinders. ø20 to 32: Stroke can be modified by the 1 mm interval. ø40 to 100: Stroke can be modified by the 5 mm interval.					
Part no.	Refer to "How to Order" for the standard model numbers.					
	ø20, ø25, ø32	1 to 349				
(mm)	ø40 to ø80	5 to 345				
()	ø100	25 to 345				
Example	Part no.: MLGPM20-39-F A 1 mm spacer is installed in MLG	PM20-40-F. Dimension C is 77 mm.				
Theoretical						

Minimum Stroke for Auto Switch Mounting

					(mm)		
No. of auto switches mounted	D-Z7 D-Z80 D-Y59 D-Y7P D-Y7 W	D-Y69[] D-Y7PV	D-Y7 <u></u> WV	D-Y7BAL	D-P5DWL		
1 pc.	15	5	10	20	25		
2 pcs.	15	5	15	20	25		
	late) D BEDWL can only be mounted on here						

D-P5DWL can only be mounted on bore sizes ø40 through ø100.

Auto Switch Mounting Bracket Part No. for D-P5DW .

(mm)	part no.	Note
40, 50, 63, 80, 100	BMG1-040	Switch mounting bracket Hexagon socket head cap screw (M2.5 x 0.45 x 8/) 2 pcs. Hexagon socket head cap screw (M3 x 0.5 x 16/) 2 pcs. Spring washer (Nominal size 3)

								רטס	「 [-	}IN	(N
Bore size	Rod size	Operating	Piston area			Op	erating	press	ure (MI	Pa)		
(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
20	10	OUT	314	63	94	126	157	188	220	251	283	314
20	10	IN	236	47	71	94	118	142	165	189	212	236
25	10	OUT	491	98	147	196	246	295	344	393	442	491
25	12	IN	378	76	113	151	189	227	265	302	340	378
30	16	OUT	804	161	241	322	402	482	563	643	724	804
32 16	10	IN	603	121	181	241	302	362	422	482	543	603
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
40	10	IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
50	20	IN	1649	330	495	660	825	990	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
05	20	IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
00	25	IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	30	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7069	7854
100	00	IN	7147	1429	2144	2859	3574	4288	5003	5718	6432	7147

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

____ CL ____ _____ CL1 MLGC CNG MNB **CNA** CNS CLS CLQ MLGP _ RLQ MLU ML1C D--X 20-Data

Retraction locking W

Weight

Slide Bearing: MLGPM20 to 100

Bore size						ę	Standard s	troke (mm)					
(mm)	20	25	30	40	50	75	100	125	150	175	200	250	300	350
20	0.84		0.92	1.00	1.08	1.34	1.54	1.74	1.93	2.13	2.33	2.80	3.20	3.59
25	1.22	—	1.32	1.43	1.54	1.92	2.19	2.46	2.74	3.01	3.28	3.94	4.48	5.03
32	—	2.09	—	_	2.47	2.87	3.25	3.64	4.02	4.40	4.78	5.73	6.49	7.26
40	—	2.44	—	_	2.86	3.32	3.74	4.17	4.59	5.02	5.44	6.48	7.34	8.19
50	—	4.13	—	—	4.77	5.50	6.14	6.78	7.42	8.06	8.70	10.4	11.6	12.9
63	—	5.23	—	—	5.99	6.83	7.59	8.34	9.10	9.85	10.7	12.5	14.0	15.5
80	_	8.50	_	_	9.44	10.7	11.7	12.6	13.6	14.5	15.5	17.9	19.8	21.6
100	_	—	—	—	15.3	17.0	18.3	19.7	21.0	22.3	23.6	27.0	29.6	32.3

Ball Bushing Bearing: MLGPL20 to 100

Bore size						ę	Standard s	troke (mm)					
(mm)	20	25	30	40	50	75	100	125	150	175	200	250	300	350
20	0.86		0.93	1.05	1.13	1.30	1.47	1.68	1.85	2.03	2.20	2.58	2.93	3.28
25	1.22		1.31	1.49	1.58	1.81	2.05	2.32	2.55	2.78	3.01	3.51	3.98	4.44
32	—	1.89	_		2.20	2.65	2.97	3.34	3.66	3.97	4.29	4.98	5.61	6.24
40	—	2.16	_		2.58	3.07	3.43	3.85	4.21	4.57	4.93	5.71	6.43	7.15
50	—	3.69	_		4.33	5.08	5.63	6.27	6.82	7.37	7.92	9.15	10.3	11.4
63	—	4.77	_		5.53	6.40	7.06	7.82	8.48	9.15	9.81	11.3	12.7	14.0
80	—	8.11	—		9.25	10.6	11.4	12.2	13.0	13.9	14.7	16.6	18.2	19.9
100		_	_	_	14.7	16.5	17.6	18.8	20.0	21.2	22.4	25.0	27.3	29.7

Allowable Rotational Torque of Plate

														Т	(N∙m)
Bore size	Pearing type							Str	oke						
(mm)	веаний туре	20	25	30	40	50	75	100	125	150	175	200	250	300	350
20	MLGPM	0.77	—	0.70	0.64	0.59	1.62	1.42	1.27	1.15	1.05	0.97	0.83	0.73	0.65
20	MLGPL	0.75	—	0.68	1.49	1.41	1.24	1.11	1.29	1.18	1.08	1.00	0.86	0.76	0.67
05	MLGPM	1.24	—	1.13	1.04	0.97	2.49	2.20	1.98	1.79	1.64	1.51	1.30	1.15	1.02
20	MLGPL	1.23	—	1.14	2.26	2.14	1.90	1.71	1.96	1.79	1.65	1.53	1.33	1.17	1.04
20	MLGPM	—	4.89	—	—	4.13	4.82	4.29	3.87	3.53	3.24	2.99	2.60	2.30	2.06
32	MLGPL		4.22	—	—	3.64	4.07	3.67	5.37	4.97	4.62	4.31	3.80	3.39	3.06
40	MLGPM	_	5.29	—	—	4.49	5.25	4.68	4.23	3.86	3.54	3.28	2.85	2.52	2.26
40	MLGPL		4.53	—	—	3.93	4.41	3.98	5.84	5.41	5.03	4.70	4.15	3.70	3.34
50	MLGPM		10.06	—	—	8.66	10.13	9.12	8.29	7.60	7.01	6.51	5.70	5.06	4.56
50	MLGPL	—	6.40	—	—	5.57	7.76	7.04	9.75	9.05	8.43	7.88	6.96	6.22	5.60
62	MLGPM	_	11.13	—	—	9.60	11.27	10.15	9.24	8.48	7.83	7.28	6.37	5.67	5.11
03	MLGPL	_	6.91	—	—	6.02	8.48	7.69	10.73	9.95	9.27	8.67	7.65	6.83	6.14
00	MLGPM	—	16.70	—	—	14.67	19.10	17.41	15.99	14.79	13.75	12.85	11.36	10.18	9.23
30	MLGPL	_	9.44	—	—	16.88	17.92	16.51	15.28	14.20	13.24	12.37	10.89	9.66	8.62
100	MLGPM	_	_	—	—	26.17	30.70	28.23	26.12	24.31	22.73	21.35	19.03	17.17	15.64
100	MLGPL	_	—	—	—	21.11	29.10	26.98	25.10	23.43	21.93	20.57	18.21	16.22	14.53

Note) Do not apply rotational force in a locked condition, as this will cause damage to the lock mechanism or decrease of the product life.

Non-rotating Accuracy of Plate

Note) For non-rotating accuracy θ without load, use a value no more than the values in the table as a guide.

Bore size	Non-rotating	g accuracy θ
(mm)	MLGPM	MLGPL
20	+0.07°	+0.000
25	10.07	±0.09
32	+0.06°	+0.080
40	10.00	±0.00
50	+0.05°	+0.06°
63	±0.00	±0.00
80	+0.04°	+0.05°
100	±0.04	<u>-</u> 0.00

(kg)

(kg)

22

Series MLGPM Series MLGPL (14) (1) (1) (3) (2) (2) (12) (33) (26) (27) (19) (1)(9)(4) (13 (21) (3) (31) (20) (34) (18) (5) 28 в (17) CL (24) $\left(\textcircled{\bullet} \right)$ () CL1 A' Α Α' Α \odot \bigcirc \odot \bigcirc MLGC Θ Ð O Ð CNG 廣 http://www.index.com **MNB** CNA CNS Over 100 stroke ø20, ø25: 50 stroke or less CLS CLQ Extension locking (Type F) **Retraction locking (Type B)** MLGP $\overline{(7)}$ (32) (6) (35) 22 (36) 22 (36) (6) (8) (8) RLQ MLU ML1C ZE D--X Section B-B Section B-B' 20-Section A-A (16 (16 Section A-A' Data **Component Parts** Description No. Material Note No. Description Material Note 1 Body Aluminum alloy Hard anodized (17) Dust cover Stainless steel (2) Lock body Aluminum alloy Hard anodized (18) Type C snap ring for hole Carbon tool steel Phosphate coated ③ Piston Aluminum alloy Chromated 19 Bumper A Urethane 20 Bumper B ø20.25 Urethane Stainless steel 4 Piston rod Hard chrome plated ø32 Carbon steel 21) Plastic magnet (5) Painted 22 Parallel pin Head cover Carbon steel Aluminum allov Intermediate Type F Chromated 23 Hexagon socket head cap screw Chromium molybdenum stee Nickel plated 6 Aluminum alloy collar Hard anodized (24) Dust cover holding bolt

Construction: ø20, ø25, ø32

Type B

Type N

Type L

ø20. 25

ø32

Carbon steel

Steel wire

Carbon steel

High carbon chrome bearing steel

Rolled steel

Chromium molybdenum steel

Oil-impregnated sintered alloy

Lead-bronze casted

Lead-bronze casted

Aluminum alloy

Heat treated

Zinc chromated

Hard chromium electroplated

Heat treated/Hard chrome plated

Nickel plated

Nickel plated

Chromated

Chromium molybdenum steel Heat treated/Electroless nickel plated

(7

8

9

10 Plate

1

12

(13)

14

(15) Spacer

16 Pivot

Lock ring

Brake spring

Plate mounting bolt

Guide rod

Bushing

Slide bearing

Ball bushing

SMC

25

26

27) Felt

28

29

(30)

31)

32

(33)

(34)

35

36

Holder

Rod seal

Scraper

Gasket A

Gasket B

Piston seal

Lock ring seal

Lock body gasket

Unlocking bolt

Hexagon socket head taper screw plug

Type C snap ring for hole

Nickel plated

Nickel plated

Phosphate coated

Nickel plated

Carbon steel

Carbon steel

Resin

Felt

Carbon tool steel

NBR

NBR

NBR

NBR

NBR

NBR

NBR

Chromium molybdenum steel

Construction: ø40 to ø100

Section A-A' rte nont D

CO	nponer	it Part	.5	
No.	Descrip	otion	Material	Note
1	Body		Aluminum alloy	Hard anodized
2	Lock body		Aluminum alloy	Hard anodized
3	Piston		Aluminum alloy	Chromated
(4)	Piston rod		Carbon steel	Hard chrome plated
(5)	Land on or	ø40 to 63	Aluminum alloy	Painted
9	Head Cover	ø80, 100	Aluminum alloy casted	Chromated/Painted
6	Intermedia	te collar	Aluminum alloy	Chromated
$\overline{\mathcal{O}}$	Collar	ø40	Aluminum alloy	Hard anodized
\cup	Collai	ø50 to 100	Aluminum alloy casted	Chromated/Painted
8	Lock ring		Carbon steel	Heat treated
9	Brake sprir	ng	Steel wire	Zinc chromated
10	Guida rad	Туре М	Carbon steel	Hard chrome plated
0	Guide Iou	Type L	High carbon chrome bearing steel	Heat treated/Hard chrome plated
11	Plate		Rolled steel	Nickel plated
(12)	Plate mount	ting bolt	Chromium molybdenum steel	Nickel plated
(13)	Bushing		Lead-bronze casted	ø50 to 100
14	Slide beari	ng	Lead-bronze casted	
(15)	Ball bushin	ng	—	
16	Spacer		Aluminum alloy	Chromated
17	Pivot pin		Carbon steel	Heat treated/Zinc chromated
18	Pivot key		Carbon steel	Heat treated/Zinc chromated
(19)	Lever		Stainless steel	
20	Ductoover	ø40 to 63	Rolled steel	Nickel plated
60	Dusi cover	ø80, 100	Stainless steel	

52617 18 Section A-A'

No	Description	n	Material	Note
21	Type C snap r	ing for hole	Carbon tool steel	Phosphate coated
22	Bumper A	ing for hold	Urethane	
23	Bumper R		Urethane	
24	Plastic magne	t	_	
25	Parallel pin	•	Carbon steel	
26	Spring pin		Carbon steel	
2	Hexagon sock countersunk h	et ead screw	Chromium molybdenum steel	Nickel plated
28	Hexagon sock cap screw	et head	Chromium molybdenum steel	Nickel plated
20	Dust cover	ø40 to 63	Chromium molybdenum steel	Nickel plated
6	holding bolt	ø80, 100	Carbon steel	Nickel plated
30	Hexagon sock taper screw pl	et head ug	Carbon steel	Nickel plated
31)	Holder		Resin	
32	Felt		Felt	
33	Type C snap r	ing for hole	Carbon tool steel	Phosphate coated
34)	Rod seal A		NBR	
35	Rod seal B		NBR	
36	Rod seal C		NBR	
37)	Scraper		NBR	
38	Piston seal		NBR	
39	Brake piston s	eal	NBR	
40	Gasket A		NBR	
(41)	Gasket B		NBR	

Dimensions: ø20, ø25, ø32

Note 2) For intermediate strokes, dimensions A, B, C, E, PA, WA, and WB will be the same as the standard stroke with a longer one.

Common Dimensions: MVGPM/MVGPL

Bore size (mm)	Standard stroke (mm)	в	с	DA	FA	FB	G	GA	GВ	н	на	IA	в	Extension locking	C Retraction locking	ID	IE	IF	IG	ІН	J	к	L
20	20, 30, 40, 50, 75, 100, 125	79.5	37	10	10	32.5	36	10.5	8.5	83	M5	26.5	36	9.5	6	_	—	M5 x 0.8	6.5	21.2	18	18	24
25	150, 175, 200, 250, 300, 350	84	37.5	12	10	36.5	42	11.5	9	93	M5	30.5	40	10	7.5	_	—	M5 x 0.8	7	23.2	21	21	30
32	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350	91	37.5	16	12	41.5	48	12.5	9	112	M6	31.5	49	9	9	32	3	Rc 1/8	8	30.2	24	24	34

Bore size				~	0.0	~	-		D 144		-		-							WA			
(mm)	ММ	ML	NN	OA	OB	OL	PA	РВ	PW	Q	к	S	I	U	VA	VB	st ≤ 25	st ≤ 30	25 < st ≤ 100	30 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 300	300 < st ≤ 350
20	M5 x 0.8	13	M5 x 0.8	5.6	9.5	5.5	12.5	10.5	25	18	70	30	81	54	72	44	_	24	-	44	120	200	300
25	M6 x 1.0	15	M6 x 1.0	5.6	9.5	5.5	12.5	13.5	28.5	26	78	38	91	64	82	50	_	24	—	44	120	200	300
32	M8 x 1.25	20	M8 x 1.25	6.6	11	7.5	7	15	34	30	96	44	110	78	98	63	24	_	48	_	124	200	300

Bore size				WB									_
(mm)	st ≤ 25	st ≤ 30	25 < st ≤ 100	30 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 300	300 < st ≤ 350	X	ХА	хв	ŶŶ	YL	Z
20		29	-	39	77	117	167	28	3	3.5	M6 x 1.0	12	17
25		29	_	39	77	117	167	34	4	4.5	M6 x 1.0	12	17
32	33	—	45	_	83	121	171	42	4	4.5	M8 x 1.25	16	21

Bore size		Α				Е	
(mm)	st ≤ 50	50 < st ≤ 200	200 < st	DB	st ≤ 50	50 < st ≤ 200	200 < st
20	79.5	111	148.5	12	0	31.5	69
25	84	115.5	152.5	16	0	31.5	68.5
32	128.5	133.5	171.5	20	37.5	42.5	80.5

A, DB, E Dimensions: MLGPM (Slide bearing) A, DB, E Dimensions: MLGPL (Ball bushing bearing)

Bore size				4						E	E		
(mm)	st ≤ 30	st ≤ 50	30 < st ≤ 100	50 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 350	DR	st ≤ 30	st ≤ 50	30 < st ≤ 100	50 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 350
20	89.5	_	106.5		130.5	148.5	10	10	_	27		51	69
25	100	_	116		135	152.5	13	16	_	32		51	68.5
32	—	112.5		129.5	149.5	171.5	16	_	21.5	_	38.5	58.5	80.5

Dimensions: ø40, ø50, ø63

manufactured by means of installing a spacer. Intermediate strokes for ø40 to ø63 are available by the 5 mm

Note 2) For intermediate strokes, dimensions A, B, C, E, PA, WA, and WB

	Bore size (mm)	а	b	с	d	е
	40	6.5	10.5	5.5	4	11
	50	8.5	13.5	7.5	4.5	13.5
C ***d*	63	11	17.8	10	7	18.5
e						

will be the same as the standard stroke with a longer one. **Common Dimensions: MVGPM/MVGPL**

interval.

Bore size (mm)	Standard stroke (mm)	в	с	DA	FA	FB	G	GA	GB	GC	н	НА	IA	в	Extension locking	C Retraction locking	ID	IE	ІН	J	к	L
40		100	44	16	12	44	54	14	10	14	120	M6	34	52	11	6.5	14	4	34.5	27	27	40
50	25, 50, 75, 100, 125, 150	107	44	20	16	47	64	14	11	12	148	M8	35	64	13	6.8	19	7	39.5	32	32	46
63	175, 200, 250, 300, 350	115	49	20	16	50	78	16.5	13.5	16.5	162	M10	38	77	16.5	7.5	19	6.5	46	39	39	58

0

Bore size					0.0	0	-			-		_		-					WA					
(mm)	ММ	ML	NN	OA	OB	OL	Р	РА	РВ	PW	Q	к	S	I	U	VA	vв	st ≤ 25	25 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 300	300 < st ≤ 350		
40	M8 x 1.25	20	M8 x 1.25	6.6	11	7.5	1/8	13	18	38	30	104	44	118	86	106	72	24	48	124	200	300		
50	M10 x 1.5	22	M10 x 1.5	8.6	14	9	1/4	9	21.5	47	40	130	60	146	110	130	92	24	48	124	200	300		
63	M10 x 1.5	22	M10 x 1.5	8.6	14	9	1/4	14	28	55	50	130	70	158	124	142	110	28	52	128	200	300		

Bore size			WB										_
(mm)	st ≤ 25	25 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 300	300 < st ≤ 350	х	XA	хв	xc	XL	ŶŶ	YL	Z
40	34	46	84	122	172	50	4	4.5	3	6	M8 x 1.25	16	22
50	36	48	86	124	174	66	5	6	4	8	M10 x 1.5	20	24
63	38	50	88	124	174	80	5	6	4	8	M10 x 1.5	20	24

Dimensions A, DB, E: MLGPM (Slide bearing)

Bore size		Α			E					
(mm)	st ≤ 50	50 < st ≤ 200	200 < st ≤ 350	DB	st ≤ 50	50 < st ≤ 200	200 < st ≤ 350			
40	131	136	174	20	31	36	74			
50	141.5	153	196	25	34.5	46	89			
63	144.5	156	199	25	29.5	41	84			

Dimensions A, DB, E: MLGPL (Ball bushing bearing)

Bore size			4				E		
(mm)	st ≤ 50	50 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 350	DB	st ≤ 50	50 < st ≤ 100	100 < st ≤ 200	200 < st ≤ 350
40	115	132	152	174	16	15	32	52	74
50	128	149	169	196	20	21	42	62	89
63	131	152	172	199	20	16	37	57	84

Compact Guide Cylinder with Lock Series MLGP

MLGPM/MLGPL ø6^{H7}depth 10 Ζ WA WB æ c d φ £ е **T-slot dimensions** CL \ge ±0.02 Detailed figure of XX section CL1 × Bore size (mm) b d е а С 80 13.3 20.3 12 8 22.5 100 15.3 23.3 13.5 30 MLGC 10 4-YY depth YL Bottom view Section XX CNG MNB **Extension locking Retraction locking** CNA CNS 4-øOA through Section XX 4-NN through 4-øOB counterbore depth 8 4-MM depth ML IA z WA IH Section XX 1c IC CLS CLQ ¢. ć MLGP ⊕ ±0.02 0.02 ₫ -slot for hexagon × .≘ţ /ØØ н £ ∎Å A N Т \times \times RLQ G ₹ Ø \odot ₹ MLU **BB** Ð o∜€ Ð G m Ō ML1C 2-Rc 3/8 IF Unlocking port (Plug) ø6 H7depth 10 2-Rc 3/8 D-Unlocked when pressurized GC PB GB 10 GA Q PA + Stroke JB ø6 H7 depth 10 JA -Х S FA C + Stroke FB IE B + Stroke Е A + Stroke 20-Note 1) The intermediate strokes other than the standard strokes Data at left are manufactured by means of installing a spacer. Intermediate strokes for ø80 and ø100 are available by the 5 mm interval. Note 2) For intermediate strokes, dimensions A, B, C, E, PA, WA, and WB will be the same as the standard stroke Common Dimensions: MLGPM/MLGPL with a longer one. IC Bore size Standard stroke в С DA FB G GA GB GC н IE IF FA HA IA IB ID IG IH J JA (mm) (mm) sion locking Retraction locking 14.5 202 M12 43 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350 139.5 56.5 25 91.5 19 15.5 110 7.5 30 5.5 Rc 1/8 7 54.2 45.5 80 22 61 18.5 38 30 25 100 50, 75, 100, 125, 150, 175, 200, 250, 300, 350 167.5 66 76.5 111.5 23 19 18 240 M14 1.5 137 23 50 5.5 Rc 1/4 15 64.2 55.5 45 11 WA Bore size JB L MM ML NN OA ов PA PB PW Q R s т U VA ٧B κ (mm) st ≤ 25 $st \le 50$ | 25 < $st \le 100$ | 50 < $st \le 100$ | 100 < $st \le 200$ | 200 < $st \le 300$ 300 < st ≤ 350 75 54 M12 x 1.75 25 10.6 17.5 14.5 25.5 74 52 174 75 198 156 180 140 80 46 M12 x 1.75 28 52 128 200 300 100 10.5 56 62 M14 x 2.0 31 M14 x 2.0 12.5 20 17.5 32.5 89 64 210 90 236 188 210 166 50 124 200 300 72 WВ Bore size YL z Х YΥ (mm) st ≤ 50 25 < st ≤ 100 50 < st ≤ 100 100 < st ≤ 200 200 < st ≤ 300 300 < st ≤ 350 st < 25

Dimensions: ø80, ø100

71

54

92

97

128

135

178

185

80

100

42

60

Bore size		Α				Е	
(mm)	st ≤ 50	50 < st ≤ 200	200 < st ≤ 350	DB	st ≤ 50	50 < st ≤ 200	200 < st ≤ 350
80	158	185	236	30	18.5	45.5	96.5
100	188.5	213.5	254.5	36	21	46	87

Dimensions A, DB, E: MLGPL (Ball bushing bearing) Bore size

ore size			4				E		
(mm)	st ≤ 25	25 < st ≤ 50	50 < st ≤ 200	200 < st ≤ 350	DB	st ≤ 25	25 < st ≤ 50	50 < st ≤ 200	200 < st ≤ 350
80	152.5	173	203	236	25	13	33.5	63.5	96.5
100	_	198.5	231.5	254.5	30	—	31	64	87

26

100 M12 x 1.75 24

124 M14 x 2.0 28

28

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

Proper Auto Switch Mounting Position

Bore size (mm)	Α	В	Bore size (mm)	Α	В
20	4	8	50	7.5 (7)	11.5 (11)
25	4.5	8	63	10 (9.5)	14 (13.5)
32	5.5	7	80	13 (12.5)	18.5 (18)
40	9.5 (9)	9.5 (9)	100	17.5 (17)	23.5 (23)

Note) Values inside () are for D-P5DWL, which can only be mounted on bores sizes ø40 through ø100.

For D-P5DWL (* Cannot be mounted on bore size ø32 or less.) ø40 to ø63

ø80, ø100

For 25 stroke

* For bore sizes ø40 through 63 with two switches, one switch is mounted on each side.

Auto Switch Mounting Height

	-	
Bore size (mm)	Hs	Ht
40	44.5	
50	50	
63	57	
80	61	84.5
100	71	96.5

Mounting of Auto Switch

▲ Caution

Auto Switch Mounting Tool

 When tightening the auto switch mounting screw (included with auto switch), use a watchmakers' screwdriver with a handle about 5 to 6 mm in diameter.

Tightening Torque

- Tighten with a torque of about 0.05 to 0.10 N·m. As a guide, it should be turned about 90° past the point at which tightening Inserting Direction for Mounting
- Auto switches can only be inserted from the head side.

For D-P5DWL

Auto Switch Mounting Tool

• When tightening the hexagon socket head cap screws of the auto switch, use hexagon wrench key 2 and 2.5 with the appropriate screws.

Tightening Torque

 Tighten M2.5 screws with a torque of about 0.5 to 0.7 N·m, and M3 screws with a torque of about 0.5 to 0.7 N·m Inserting Direction for Mounting

Inserting Direction for Mounting

 Auto switches can only be inserted from the head side. Hexagon wrench key 2 Auto switch mounting bracket

Operating Range

Auto owitch model				Bore siz	ze (mm)			
Auto Switch model	20	25	32	40	50	63	80	100
D-Z7□/Z80	10	10	10.5	10.5	10.5	11.5	11.5	12
D-Y5□/Y6□ D-Y7P/Y7PV D-Y7□W/Y7□WV	7.5	7	6.5	6	7	8	9.5	10
D-Y7BAL	5	5	6	6	6	6	6	6.5
D-P5DWL	—		—	4	4	5	4	4

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately ±30% dispersion) There may be the case it will vary substantially depending on an ambient environment.

Other than the applicable auto switches listed in "How to Order", the following auto switches can be mounted. For detailed specifications, refer to page 9-15-1.

Туре	Model	Electrical entry (Fetching direction)	Features							
Reed switch D-Z80 Grommet (In-line) Without indicator light										
* Normally closed (NC = b contact), solid state switch (D-Y7G/Y7H type) are also available.										

CL
CL1
MLGC
CNG
MNB
CNA
CNS
CLS
CLQ
MLGP
RLQ
MLU
ML1C
D-
-X
20-
Data