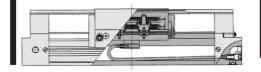


Mechanical Joint Rodless Cylinder with Brake Hy-Rodless Cylinder Series ML1 ø25, ø32, ø40

Brake mechanism has been compactly integrated into the slide table which enables intermediate stops of the rodless cylinder.

Many kinds of auto switches are applicable.


Reed switch—D-E7□A, D-E80A Solid state switch—D-M5 2 color indication solid state switch—D-M5□W Timer equipped solid state switch—D-M5□TL

Cam follower guide style

Cam follower style guide mechanism adopted. Excellent moment resistance.

External air piping for brake release not required.

Brake releasing air flows from head cover to slide table through air tube in cylinder body. There is no restriction on piping requirements because piping to the outside of the slide table is not necessary.

Centralized piping style "High degree of freedom".

Air connections can be done at one end for additional space savings.

There are 6 actuating ports and 3 brake release ports at head cover WR, and 6 actuating ports on the head cover WL. The most suitable piping position can be selected by choosing each 1 port from A, B, C and combining them.

Made to Order Specifications	Refer to p.5.4-79 for "Made to Order Specifications" of series ML1.	 Long stroke Holder mounting brace 	(-X B11) cket (-X 416 417)

Prior to Use

Max. allowable moment/Max. payload

Model	Allowable monent (Nm)		Max. payload (kg)				
Model	M1	M2	M3	W1	W2	W3	W4
ML1C25	14.7	4.90	4.90	20	12	3	10
ML1C32	29.4	9.80	9.80	32	19	5	16
ML1C40	58.8	19.6	19.6	50	30	8	25

Max. Allowable Moment

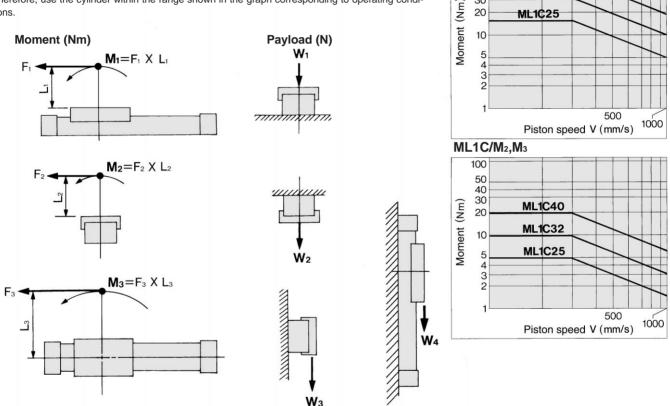
ML1C40

ML1C32

ML1C/M1

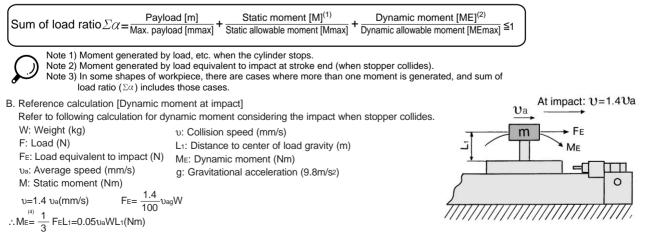
50

40


30

Select the moment within the limits shown in the graphs below. Note that the maximum payload value in some cases may exceed Max. allowable payload despite being within the limit shown in the graph; therefore, payload on the operating conditions should be checked.

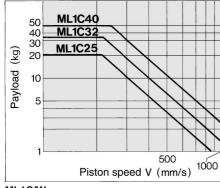
Design Consideration


Allowable moment and Max. payload

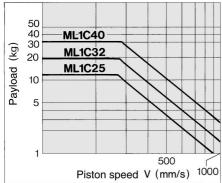
Allowable moment and Max. payload varies depending on mounting orientation, piston speed etc. Therefore, use the cylinder within the range shown in the graph corresponding to operating conditions.

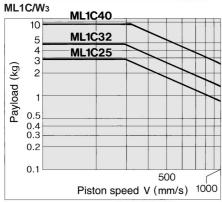
$\langle \mbox{How to calculate the load ratio} \rangle$

A. Consider ① Max. payload, ② static moment, ③ dynamic moment (when stopper collides) when calculating the Max. allowable moment and payload. *Evaluate ① and ② as va (average speed), and ③ as v (collision speed v=1.4va). Calculate ① (Wmax) from the graph of Max. payload (W1, W2, W3) and calculate ② and ③ (Mmax) from the graph of Max. allowable moment.

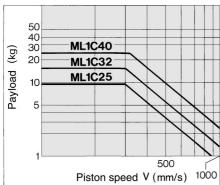


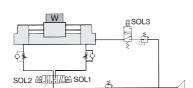
Note 4) Average load ratio (This is for averaging Max. load moment when stopper collides in case of calculating the life.)


Max. Payload


Select the Max. payload to be applied within the limits shown in the graph. Note that the maximum allowable moment may in some cases exceed Max. allowable moment despite being within the limit shown in the graph: therefore, allowable moment on operating conditions should be checked.

ML1C/W1





ML1C/W4



Precautions for Air Pressure Circuit Design

[Recommended pneumatic circuit example] Horizontal orientation

*Be sure to use the circuit above. Consult SMC in case of using other circuits.

STOP OFF OFF OFF To left ON OFF ON To right OFF ON ON

Solenoid valve for actuating and braking

slide table movements.

 Install a solenoid valve for braking as close to the cylinder as possible. If there is a long dis-

<Recommended solenoid valve examples>

style or direct operated style). <Solenoid valve for braking>

<Solenoid valve for actuating>

Horizontal orientation Use pressure center style valve.

Vertical orientation

•The Cv factor of the solenoid valve used for braking should be almost the same level as that of the solenoid valve for actuating. If the Cv factor is smaller, it may cause unexpected sudden

Control the operation with a meter-out system.

Use exhaust center style valve (external pilot

Air balance

On both above mentioned circuits, the air balance is made by pressurizing to both sides of cylinder on the condition of the intermediate stop. In case of the vertical orientation, reduce the pressure of the upside by the regulator (A) to keep the balance of load. If the air balance is not made, it may cause unexpected sudden slide table movements after the intermediate stop operation, once the reverse operation occurs, resulting in compromised accuracy of the cylinder.

tance between the cylinder and valve, it may cause fluctuations in the stop accuracy or unexpected sudden slide table movements.

	Horizontal	Vartical		
Actuating	VFS2500	VFS2400R		
Braking VP300 or VFS2100				
* Determine the size of the solenoid valve ac-				
cording to the operating cylinder speed.				

Supply pressure

•Set the supply pressure at 0.25 to 0.5MPa. If setting at less than 0.25 MPa. malfunction of the release brake may occur.

. If air is directly supplied from main line, pressure fluctuation on the main line will directly influence to cylinder operation characteristics. Accordingly, install a regulator before the actuating/braking valve so that regulated air is supplied to cylinder. If many cylinders are operated, use large flow regulators and a surge tank may be installed for better operation.

Precautions

Be sure to read before handling. Refer to p.0.39 to 0-46 for Safety Instructions and common precautions.

Operation

A Caution

I.

(1)Even though Hy-rodless cylinder can be loaded within the Max. allowable payload, precise alignment is required if connected to a payload which has external support structure.

2 Due to factory pre-adjusted guide and brake plate, re-adjustment is not required under normal operating conditions. Accordingly, do not change the setting on adjustment section.

③Do not operate the cylinder in an environment in which the cylinder will be exposed to cutting chips, dust (paper debris, lint, etc.), spatter, or cutting fluid (light oil, water, warm water, etc.), which could lead to operational problems.

(4) It is recommended that grease be applied periodically to the sliding portion of the bearing and to the dust seal band to increase their service life.

5 Under operating conditions in which a vacuum is created in the cylinder through external forces or inertia, be aware that air could leak out through the separation of the seal belt.

Precautions for Mounting

A Caution

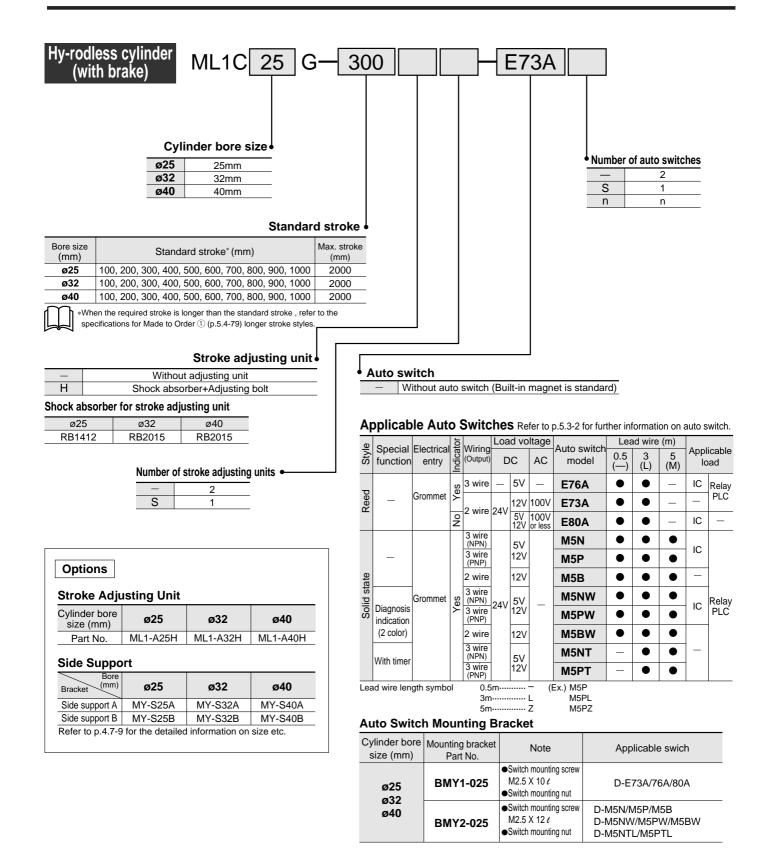
1) Take care not to mark or damage the outside surface of the cylinder tube. This may result in damaged bearings or scraper, which

will cause cylinder malfunction. 2) Take care not to apply any loads to the dust

proof cover. It can cause a cylinder malfunction.

3Because the slider is supported by a precision bearing system, take care not to apply a strong impacts or excessive moments to the table when loading a workpiece.

RSQ/RSG RSH CE1 CE2 ML2B ML1C REA REC RHC MTS


CC

MK/MK2

Mechanical Joint Rodless Cylinder with Brake Hy-Rodless Cylinder Series ML1

ø25, ø32, ø40

How to Order

Cylinder Specifications

Bore size (mm)	ø25	ø32	ø40	
Guide mechanism	Ca	am follower gu	ide	-
Fluid		Air		-
Action		Double acting	ļ	-
Operating pressure range (MPa)		0.1 to 0.8		-
Proof pressure (MPa)		1.2		
Ambient and fluid temperature		5 to 60°C		
Operating piston speed (mm/s)		100 to 1000		
Cushion	Air cushior	Air cushion at both sides (Standard)		
Lubrication		Non-lube		
Stroke length tolerance (mm)		+1.8 0		RSH
Port size Rc (pt) Front port, Side port, Bottom port	1	/8	1/4	
· ·				CE1

Brake Specifications

Locking mechanism	Spring lock (Exhaust lock)
Fluid	Air
Max. operating pressure (MPa)	0.5
Brake releasing pressure (MPa)	0.25
Braking pressure (MPa)	0.18
Braking direction	Both directions
	·

Stroke Adjusting Unit Specifications

Applicable cyli	Applicable cylinder size		ø32	ø40			
Stroke fine adjust	ting range	Any p	Any position on the entire stroke				
Stroke fine adjust	sting range (mm)	0 to -11.5	0 to -12	0 to -16			
Shock absorber	model	RB1412	RB2015	RB2015			
Max. absorbing	Max. absorbing energy (J)		58.8	58.8			
Absorption strok	Absorption stroke (mm)		15	15			
Max. collision sp	eed (mm/s)	1000	1000	1000			
Max. operating fre	equency (cycle/min)	45	25	25			
Spring Force	When extended	6.86	8.34	8.34			
(N)	When retracted	15.98	20.50	20.50			
Operating tempe	Operating temperature range		5 to 60°C				

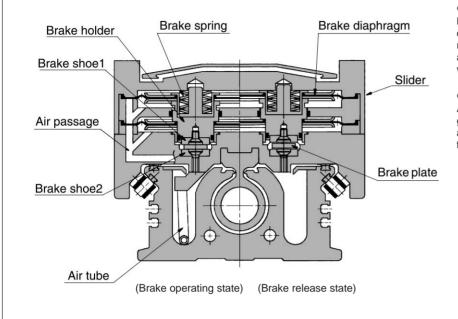
Made to Order Specifications

Refer to p.5.4-18 and 5.4-108 for Made to Order Specifications of ML1.

Weight					Unit: kg	
Bore size (mm)	Base weight	Additional weightBase weightper 50 stroke		Side support bracket weight		
(1111)		increments	A type	B type	(per unit)	
ø25	3.86	0.275	0.015	0.016	0.25	
ø32	6.05	0.425	0.040	0.041	0.41	
ø40	8.38	0.545	0.076	0.080	0.50	

Theoretical Force

Theoretical F	orce							Unit: N
Bore size	Piston area			Operatin	g pressur	e (MPa)		
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
ø25	490	98	147	196	245	294	343	392
ø32	804	161	241	322	402	483	563	643
ø40	1256	251	377	502	628	754	879	1005


ML1C REA REC RHC MTS CC

CE2

ML2B

Series ML1

Brake Operating Principles

(Braking)

Brake force is generated by a brake spring acting on a brake shoe 1 attached to brake holder, brake rails and holds brake plate between brake shoe 1 and brake shoe 2 fixed to slider side so that slider will stop.

(Brake releasing)

Air pressure supplied from the head cover side goes to the slide table through the air tube and acts on the brake diaphragm, reducing the spring force and releasing the brake.

Brake Capacity

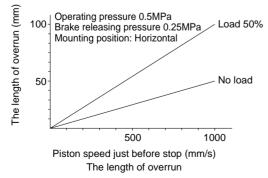
Holding force (Max. static load)

Bore size (mm)	ø25	ø32	ø40
Holding force	320N	500N	800N

 ①Holding force is the force which can hold a static load which does not involve vibration or shock in the locking condition with cylinder pressure balanced. Therefore, cylinder application is around the max. holding force. Please note the following points.
 Select the cylinder bore size so that the load is less than 80% of the holding force.

•Select the cylinder bole size so that the load is less than 80% of the holding force. •If slipping occurs when the load is over holding force, the brake shoe will be damaged,

and it is possible the holding force will become smaller or the cylinder life shortened.


Overrun

Idle running Braking distance Stop distance (Run) (Overrun) Overrun model

Stop position

When cylinder is stopped at intermediate strokes, "Idle running distance" is from detection of stop signal to beginning of brake operation and "braking distance" is from beginning of brake operation to the stop of slider.

The graph above shows the relation between piston speed and overrun. (The length of overrun is changed, dependent on piston speed, load, piping conditions and control method. Be sure to adjust the stop signal position, etc. by trial operation with the actual machine.)

Allowable kinetic energy

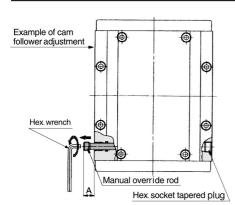
Bore size (mm)	ø25	ø32	ø40		
Allowable kinetic energy (J)	0.43	0.68	1.21		

Stop dispersion

When cylinder is stopped at intermediate stroke, there is dispersion of stop position. Dispersion of stop position is changed dependent on piston speed, load, piping condition and control method. Use values on the table below as reference.

Stopping accuracy

Piston speed (mm/s)	100	300	500	800	1000
Stopping accuracy (mm)	±0.5	±1.0	±2.0	±3.0	±4.0


Conditions: Operating pressure 0.5MPa

Brake releasing pressure 0.25MPa

Load 25%

Solenoid valve: Installed on the brake release port Dispersion of control system is disregarded.

Manual Override Operation

A Warning

In case of manual operation, be sure to supply air for brake releasing. If not, this may result in damage to the brake, which will cause a cylinder malfunction.

Brake releasing

①Supply the air for releasing the brake to the air supply port on the head cover. This air should be 0.4 to 0.5MPa.

2 Loosen the manual override (nickel plated) rod on the slide table, and draw the rod until it reaches to the end. The size of the hexagon wrench should be 3mm (ML1C25, 32) or 4mm (ML1C40). ③Exhaust the air to release the brake.

Manual rod drawing dimensions

Part No.	A
ML1C25	23
ML1C32	27
ML1C40	32

Operation of brake

①Supply the air for releasing brake to braking air supply port on the head cover. This should be 0.4 to 0.5MPa.

MK/MK2

RSQ/RSG

RSH

CE1

CE2

②Screw the manual rod into the slide table completely.

③Exhaust the air for brake releasing.

Cushion Ability

Cushion sizing

<Air cushion>

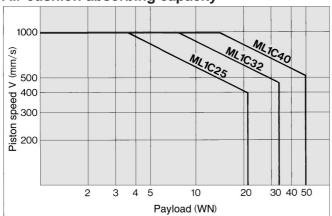
Air cushion is standard on Hy-rodless cylinder. Air cushion is installed to prevent the impact which occurs as the piston is stopped at the stroke end with a large moment. Air cushion is not applied for slow piston operation around the stroke end. A range of the weights a and speeds that an air cushion can absorb is within the limits shown in the graph, "Air cushion absorbing capacity".

<Stroke adjustment unit with shock absorber>

When weight and speed are over the air cushioning capacity, or when impact absorption is over the air cushion stroke caused by stroke adjustment use shock absorbers.

Notes)

①Adjust the shock absorber so that stroke will be fully utilized to near the limit of allowable energy, because absorption capacity becomes extremely small if the absorber's effective stroke is short due to a stroke adjustment.


2 In case of using a shock absorber within the range of the air cushion stroke, revolve the air cushion needle thoroughly (1 revolution from the end).

(mm)

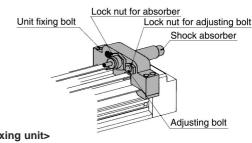
Air cushion stroke

Bore size	Cushion stroke
ø25	15
ø32	19
ø40	24

Air cushion absorbing capacity

Stroke adjusting unit with shock absorber/ Calculation of absorbed energy

		5		
	Horizontal impact	Vertical impact (down)	Vertical impact (up)	ML2B
Configuration	impact			ML1C
	w s	V ₩		REA
of impact				REC
				RHC
Oparating energy		$\frac{W}{2g}V^2$		MTS
E1		2g		<u></u>
Thrust energy E2	Fs	Fs+Ws	Fs-Ws	CC
Absorbing energy E		E1+E2		


Symbols

g: Gravitational acceleration (9.8m/s²) F: Cylinder thrust (N) V: Impact speed (m/s)

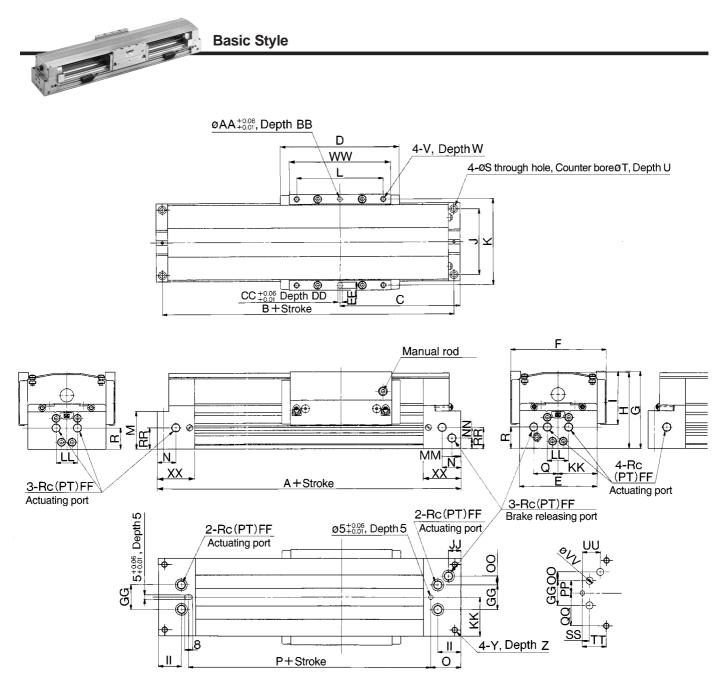
W: Impact mass amount (kg) s: Stroke length of shock absorber (m)

Note) "Impact speed" means the speed at point of collision with shock absorber.

How to Adjust

<Moving and fixing unit>

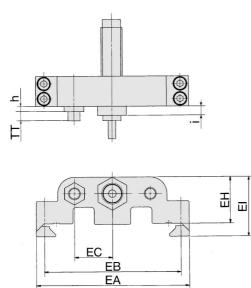
Remove the dust proof cover, loosen the four fixing bolts to move the unit body. Tighten four fixing bolts to fix the unit body with equal tightening torque. However, there is a possibility that the adjustment mechanism will be tilted due to high impact energy. We recommend a holder mounting bracket for adjustments. Holder mounting bracket for adjustments is available as an option. (Please add "-X461" or "-X417" suffix to the part number.) If any other length is required, please consult SMC

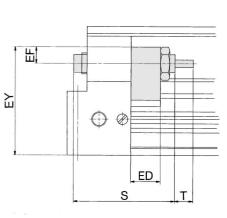

<Stroke adjustment of adjusting bolt >

After loosening the lock nut for adjusting bolt, adjust the stroke with hexagon wrench. Then, tighten lock nut.

<Stroke adjusting of shock absorber>

After loosening the lock nut for the shock absorber, adjust the stroke by rotating shock absorber, then fix the shock absorber by tightening lock nut. Do not over tighten the lock nut.


Series ML1



Bottom side piping port size Mounting side should be processed according to the dimensions below.

																	511510	113 1		, vv.								
																N	lodel	(00	PP	QQ	RR	SS	TT	UU	VV	Gas	ket
																ML	-1C2	5	10	14	37	24	8	27	20	ø8	C11	1.2
																ML	-1C3	2	16.5	18	46	30	12	32	22	ø8	C11	1.2
																ML	-1C4	0	17	23.5	53	40	12.5	34	26	ø10	C1	4
Model	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	0	Р	Q	R	S	Т	U		V		w	Y		Ζ
ML1C25	274	260	137	140	88	108	87	85.5	60	74	97	100	42.5	26	34	206	28	24	ø5.6	6 ø9	5.5	5 M	5 X 0	.8 8	3.5	M6 >	(1	9.5
ML1C32	322	306	161	160	108	131	101	99.5	64	92	118	120	53.5	28	40	242	36.5	30	ø6.8	3 ø11	6.6	3 N	/16 X	1	12	M8 X ⁻	1.25	16
ML1C40	372	354	186	190	124	158	118	116.5	73	106	144	140	64	30.5	43	286	40.5	35	ø8.6	6 ø14	8.5	5 M8	3 X 1.	25	14	M10 X	1.5	15
																-												
Model	AA	BB	CC	DD	EE	FF	GG	Ш	JJ	KK	LL	MM	NN	WW	XX													
ML1C25	ø5	5	5	5	7	¹ /8	28	26	14	44	20	16	12.5	120	42													
ML1C32	ø6	5	6	5	8	¹ /8	36	28	18	54	36	18	12.5	140	48													
ML1C40	ø6	5	6	5	8	1/4	47	30.5	17	62	30	22	16.5	170	51	-												

Stroke Adjusting Unit

MK/MK2 RSQ/RSG

RSH

CE1

CE2

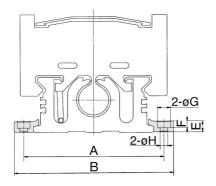
ML2B

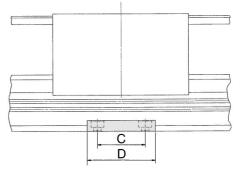
ML1C

REA

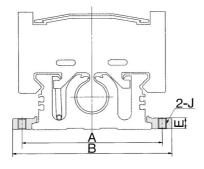
REC

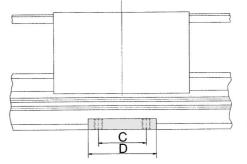
RHC

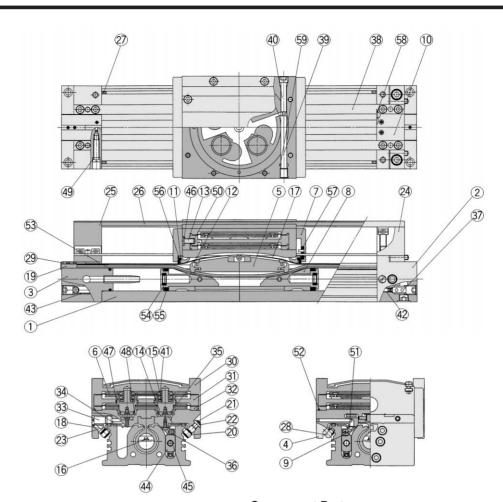

MTS


CC

Part No.	Cylinder	EA	EB	EC	ED	EF	EY	S	Т	EH	EI	TT	h	i	Absorber model
ML1-A25H	ML1C25	101	90	25	20	11	72	67.3	12	31	39.5	MAX. 16.5	4.5	3	RB1412
ML1-A32H	ML1C32	120	107	30	25	16	93	73.2	15	38	49	MAX. 20	5.5	6	DDOO15
ML1-A40H	ML1C40	147	129	30	31	16	105.5	73.2	15	40.5	54.5	MAX. 25	5.5	6	RB2015


Side Support


Side support A


Side support B

										(mm)
Part No.	Cylinder	А	В	С	D	E	F	øG	øН	J
MY-S25 ^A _B	ML1C25	103	117	35	50	8	5	9.5	5.5	M6 X 1
MY-S32 ^A _B	ML1C32	128	146	45	64	11.7	6	11	6.6	M8 X 1.25
MY-S40 ^A B	ML1C40	148	170	55	80	14.8	5	14	9	M10 X 1.5
										1

Construction

Component Parts

Com	ponent Parts		
No	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Hard anodized
3	Head cover WL	Aluminum alloy	Hard anodized
4	Side table	Aluminum alloy	Hard anodized
(5)	Piston assembly	Aluminum alloy	Hard anodized
6	Brake diaphragm assembly	—	
$\overline{\mathcal{O}}$	End cover	Chrome molybdenum steel	Nickel plated
8	Wear ring	Special resin	
9	Air joint assembly	—	
10	Plate tensile table	Rolled steel	Nickel plated
1	Back up plate	Special resin	
12	Belt separator	Special resin	
13	Port joint	Stainless steel	
14)	Brake holder assembly	Carbon steel	Gas soft nitrided
(15)	Spring holder	Carbon steel	Gas soft nitrided
16	Seal belt	Special resin	
17	Dust seal band	Stainless steel	
(18)	Rail	Hard steel wire	
(19)	Belt clamp	Special resin	
20	Cam follower	—	
21)	Eccentric screw cap	Stainless steel	
22	Lock nut	Stainless steel	
23	Bushing	Stainless steel	
24)	Dust proof cover mount table R	Aluminum alloy	Hard anodized
25	Dust proof cover mount table L	Aluminum alloy	Hard anodized
26	Dust proof cover	Aluminum alloy	Hard anodized
27)	End spacer	Special resin	
28	Magnet assembly	Aluminum alloy	Anodized
29	Seal lock plate	Rolled steel	Nickel plated
30	Slider cover assembly	Aluminum alloy	Hard anodized
31	Diaphragm plate assembly	Aluminum alloy	Chromated
32	Diaphragm ring	Aluminum alloy	Chromated (ø25only)

Component Parts

No	Description	Material	Note
33	Cam follower cap	Aluminum alloy	Hard anodized
34	Tube cover	Aluminum alloy	Hard anodized
35	Brake shoe	Special brake lining	
36	Joint ring	Stainless steel	
37	Air coupler 2	Stainless steel	
38	Brake disc	Stainless steel	Hard chrome plated
39	Manual rod 1	Carbon steel	
40	Manual rod 2	Carbon steel	
(41)	Brake spring		
42	Air tube	Special resin	
43	Cable	Stainless steel	
(44)	Tube guide assembly		
(45)	Guide rod	Stainless steel	

Replacement Parts

No	Description	Material	ML1C25G	ML1C32G	ML1C40G
46	O ring	NBR	C-7	C-7	C-7
47	O ring	NBR	SO-015-22	SO-015-24	SO-020-31
(48)	O ring	NBR	SO-015-16	SO-016-9	SO-015-20
(49)	Needle gasket	NBR	8.3 X 4.5 X 1.9	C-4	C-4
50	O ring	NBR	SO-010-16	SO-010-16	SO-010-16
51)	O ring	NBR	SO-010-16	C-6	C-8
52	O ring	NBR	C-100	AS568-048	C-150
53	Tube gasket	NBR	NLP-25-19A	NLP-32A	NLP-40A
54)	Cushion seal	NBR	RCS-8	RCS-10	RCS-12
55	Piston sael	NBR	GMY25	GMY32	GMY40
56	Scraper 1	NBR	M1L025-17A82076	M1L032-17A82077	M1L040-17A82078
57	Scraper 2	NBR	M1L025-17B82076	M1L025-17B82076	M1L040-17B82078
58	Bypass gasket	NBR	C-6	C-7	C-9
59	O ring	NBR	P-6	P-6	P-8

Series ML1 Auto Switch Specifications

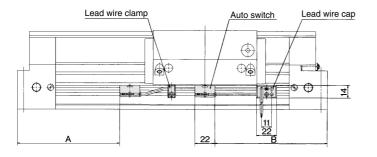
Refer to p.5.3-2 for the details of auto switch.

Applicable auto switch

Style	Model	Electrical entry	Indicator	Page	
Decidentials	D-E7□A	Grommet	Yes	5.3-24	
Reed switch	D-E80A	(In-line)	No	5.3-24	
	D-M5	a <i>i</i>	Yes	5.3-41	
Solid state	D-M5⊡W	Grommet (In-line)	Yes (2 color indication)	5.3-47	MK/MK2
	D-M5□TL	(Yes (With timer)	5.3-62	RSQ/RSG

Precautions /!\

Be sure to read before handling.


Refer to p.0-44 to 0-46 for common precautions of auto switch.

Mounting Position (Stroke End)/Reed Switch

D-E73A (L), D-E76A (L), D-E80A (L)

Mounting Position (Stroke End)/Solid State Switch

D-M5B (L), D-M5N (L), D-M5P (L) D-M5BW (L), D-M5NW (L), D-M5PW (L) D-M5NTL, D-M5PTL

Lead wire cap Lead wire clamp Auto swich -÷0 Ì \oplus \oplus Ø. 4 . (†) 11 22 36 В

RHC MTS

RSH

CE1

CE2

ML2B

ML1C

REA

REC

CC

Lead wire clamp/Lead wire cap (option)

	Serie	es	Lead v	wire clamp	Lead wire cap			
	ML1	С	L	_C-01		LP-01		
						Unit: mm		
Series	Mounting position	ø2	:5	ø32		ø40		
ML1C	А	124	4.8	148.8		173.8		
	В	11:	3.2	137.2		162.2		

Lead wire	clamp/Lead	l wire cap	(option)
-----------	------------	------------	----------

Series	Lead wire clamp	Lead wire cap
ML1C	LC-01	LP-01

Series	Mounting position	ø25	ø32	ø40
ML1C	A	128.5	152.5	177.5
	В	123.5	147.5	172.5