

The air-hydro unit consists of a converter and a valve unit that are compactly integrated. It converts air pressure to an equivalent hydraulic pressure, and this hydraulic pressure is used for operating an actuator, thus solving the problem that is associated with the compression characteristics of air. Thus, in spite of using pneumatic equipment, it performs similarly to a

A selection of valve unit is available to suit your application.

Although the converter and the valve unit are integrated, they can also be operated by connecting individual piping. hydraulic unit, operating at a constant speed during starting or in the presence of load fluctuations, and at the same time solving the problems of sticking and slipping associated with low speed operations. This unit is ideal for achieving accurate and constant speed of the cylinder, intermediate stopping, skip movement, or for slow operation of a rotary actuator.

High cylinder driving speed.

Through the availability of a wide range of series in terms of converter capacity and valve unit flow rate control capability, speed as high as 200 mm/s (throttle valve) can be achieved with a ø80 cylinder. (Operating pressure: 0.5 MPa, unloaded,

Piping: Bore 19 mm x 1 m)

Series CCVS/CCVL

Valve Unit

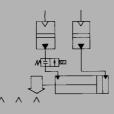
Air-hydro Unit Series CC

1. Function of stop valve

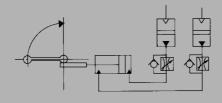
2. Function of skip valve

Fast forward to working process

Prevents load dropping (In an emergency)

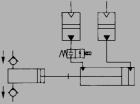

M∰II™

Air-hydro Converter *Series CCT*

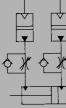


Application Example

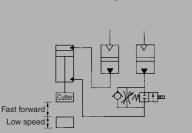
Multipoint intermediate stops



3. Flow control valve (With pressure compensation) Uniform driving for load fluctuations



@SMC


Fixed end point (Not only solid but also liquid is available if there is pump mechanism at the end.)

- 4. Throttle valve/Speed controller
 Working without jumping at low speeds or when starting.
 - Control with throttle valve and speed controller when transferring and carrying.

REA REC C C MQM RHC MK(2) RSGQ RS^H RZQ MIs CEP1 CE1 CE2 ML2B C_g^J5-S CV MVGQ CC RB J D--X 20-Data

Air-hydro Unit Handling Precautions

Be sure to read before handling.

Selection Step

Step (1) Select the bore size of air-hydro cylinder

First of all, select a bore size from data (D) <Theoretical Output Table>. When making a selection, the ratio between the theoretical output and the load should be 0.5 or less.

Step (2) Select converter

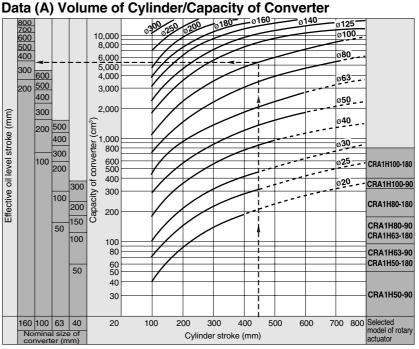
Select the nominal diameter and the effective oil level stroke from data (A), <Cylinder Displacement and Converter Capacity Diagram>. When selecting a converter by its nominal diameter, the converter's oil level speed should be 0.2 m/s or less.

Step (3) Select required function for valve unit

Select a model from data (B), <Converter and Valve Unit Combinations and Applications Table> by determining the functions that are needed for the valve unit in accordance with your application.

Step (4) Select the size of valve unit

Using data (C), <Air-Hydro Cylinder's Maximum Operating Speed> as a reference, select the size of a valve unit by determining whether it meets the desired cylinder operating speed.


* The model of an air-hydro unit that is suitable for a particular application is determined by the combination of the converter that was selected in steps (1) and (2), and the valve unit that was selected in steps (3) and (4). For details on how the models are indicated, refer to "How to Order".

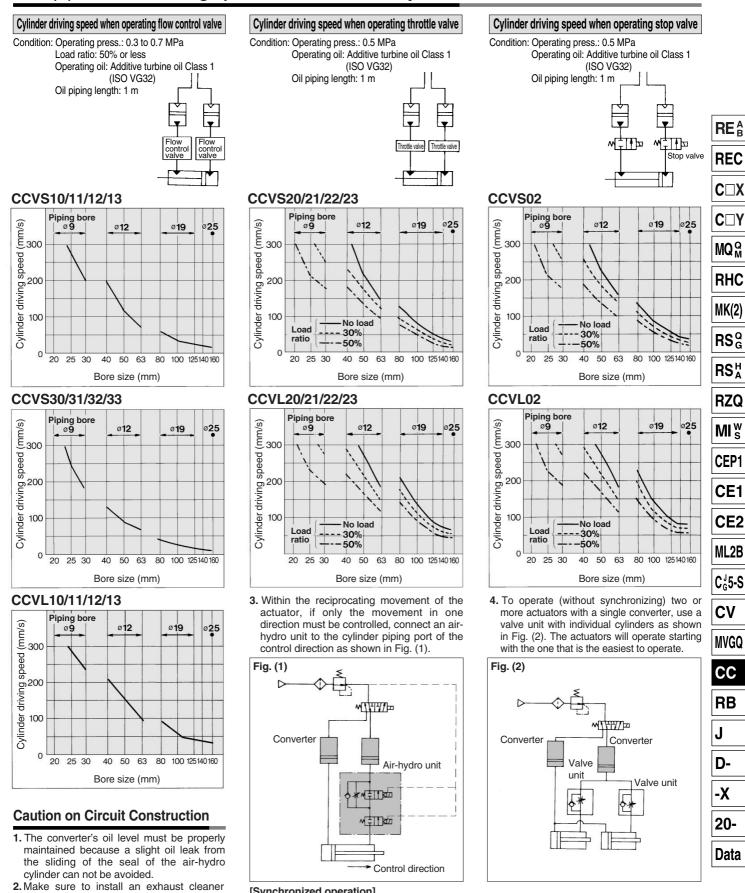
Caution on Selection

1. Make sure to select a cylinder and a rotary actuator for an air-hydro operation. Do not use these for pneumatic operations because they will lead to oil leaks.

Air-hydro rotary actuator: CRA1H□-□

2. When determining the size of a converter based on the <Cylinder Displacement and Converter Capacity Diagram>, do not select a converter bore that is too small for the cylinder's bore size because this will increase the oil level speed, causing the oil to blow out. Thus, select a converter bore, so that the oil level speed will be 200 mm/s or less.

How to read the graph (ex: when using a ø100 to 450 st cylinder): Draw a line perpendicularly from the cylinder stroke of 450 to the point at which it intersects the (curve) cylinder bore size of ø100, and extend it to the left to obtain the displacement of approximately 5,300 cm³. Then, select a converter with a larger capacity. The converter will be ø160 to 300. To obtain the capacity of the converter, multiply the cylinder displacement by approximately 1.5. Note) Select the nominal diameter of the converter so that the converter's oil level speed does not exceed 0.2 m/s.


Data (B) Combination of Converter and Valve Unit/Operating Purpose

Control Combined valve valve	Without control valve	Throttle valve	Flow control valve (With pressure compensation)	Operating purpose
Without stop valve Without skip valve				In case only speed control is needed.
Stop valve				Intermediate stops, step feed, emer- gency stops, and stop for service are possible.
Skip valve				Double speed change is possible. (Fast forward, Uniform speed delivery)
With stop valve With skip valve				Intermediate stops, step feed, emer- gency stops, stops for service, double speed change are possible.
Operating purpose	For applications that do not require speed control, as long as objects are moved smoothly. Or for applications in which a pneumatic speed controller suffices. (3 dm ³ /min or more)	For applications that require a crawl speed control (0.3 dm ³ /min or more), provided that fluctuations caused by operating pressures and loads are permissible.	For applications that require a crawl speed fluctuation control (0.04 to 0.06 dm³/min or more), and require an almost constant speed even when the operating pressure or the load fluctuates.	

Data (C) Maximum Driving Speed of Valve Unit and Cylinder

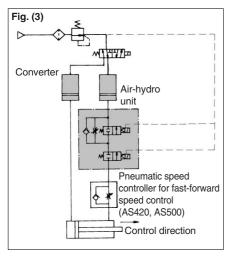
[Synchronized operation]

@SMC

(Series AMC) on the direction switching

valve.

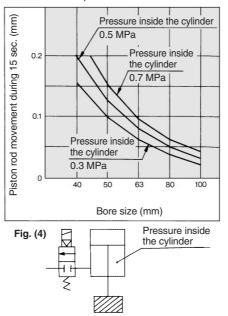
It is practically impossible to completely synchronize the operation of two or more cylinders. Therefore, a mechanical device must be used for regulating the operation of individual cylinders. The mechanical device must provide a level of rigidity that is appropriate for the cylinder thrust. If it lacks rigidity, it could apply an unbalanced load on the cylinders, leading to a considerable reduction in the durability of the cylinders.



Data (D) The	eoretical	Output							►001		
Bore size	Rod size	Operating	Piston area				Operat	ing pressure	(MPa)			(N)
(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
20	8	OUT	314	62.8	94.2	126	157	188	220	251	283	314
		IN	264	52.8	79.2	106	132	158	185	211	238	264
25	10	OUT	491	98.2	147	196	246	295	344	393	442	491
20		IN	412	82.4	124	165	206	247	288	330	371	412
32	12	OUT	804	161	241	322	402	482	563	643	724	804
		IN	691	138	207	276	346	415	484	553	622	691
40	14	OUT	1260	252	378	504	630	756	882	1010	1130	1260
		IN	1100	220	330	440	550	660	770	880	990	1100
50	20	OUT	1960	392	588	784	980	1180	1370	1570	1760	1960
		IN	1650	330	495	660	825	990	1160	1320	1490	1650
63	20	OUT	3120	624	936	1250	1560	1870	2180	2500	2810	3120
		IN	2800	560	840	1120	1400	1680	1960	2240	2520	2800
80	25	OUT	5030	1010	1510	2010	2520	3020	3520	4020	4530	5030
		IN	4540	908	1360	1820	2270	2720	3180	3630	4090	4540
100	30	OUT	7850	1570	2360	3140	3930	4710	5500	6280	7070	7850
		IN	7150	1430	2150	2860	3580	4290	5010	5720	6440	7150
125	36	OUT	12300	2460	3690	4920	6150	7380	8610	9840	11100	12300
		IN	11300	2260	3390	4520	5650	6780	7910	9040	10200	11300
140	36	OUT	15400	3080	4620	6160	7700	9240	10800	12300	13900	15400
		IN	14400	2880	4320	5760	7200	8640	10100	11500	13000	14400
160	40	OUT	20100	4020	6030	8040	10100	12100	14100	11500	18100	20100
		IN	18800	3760	5640	7520	9400	11300	13200	15000	16900	18800
180	45	OUT	25400	5080	7620	10200	12700	15200	17800	20300	22900	25400
100	-10	IN	23900	4780	7170	9560	12000	14300	16700	19100	21500	23900
200	50	OUT	31400	6280	9420	12600	15700	18800	22000	25100	28300	31400
		IN	29500	5900	8850	11800	14800	17700	20700	23600	26600	29500
250	60	OUT	49100	9820	14700	19600	24600	29500	34400	39300	44200	49100
200		IN	46300	9260	13900	18500	23200	27800	32400	37000	41700	46300
300	70	OUT	70700	14100	21200	21200	35400	42400	49500	56600	63600	70700
000	10	IN	66800	13400	20000	26700	33400	40100	46800	53400	60100	66800

Caution on Circuit Construction

Skip valve


- When using a skip valve, the maximum allow-able ratio between the high speed and the low speed is approximately 3:1. If this ratio is too large, air bubbles could form due to cavitation, and air bubble could lead to the conditions described in the single-side hydro pages 1), 2), 3), and 4) of the "Cautions/Common Precautions"
- 2. If the skip valve of an air-hydro unit with skip valve is operated, because it is not equipped with a speed control valve, the fast-forward speed will be determined by the model, piping conditions, and the actuator used. In this case the cylinder could operate at extremely high speeds if the cylinder bore size is small. If it is necessary to control the fast forward speed, use a pneumatic speed controller as shown in Fig. (3)

Stop valve

- 1. Operate the stop valve under meter-out control.
- 2. If the movement must be stopped at an intermediate position in both directions through the use of a stop valve, make sure to provide a stop valve for both the head side and the rod side

- 3. If the cylinder is operated facing up, when the stop valve that is provided on the rod side is closed, the piston rod could descend when the pressure on the head side is turned to zero. To prevent this, a stop valve must also be provided on the head side.
- 4. Because the stop valve uses a metal seal, it has a slight leak. Due to this leakage, the cylinder could move in the amount that is shown in the diagram, after making an intermediate stop.

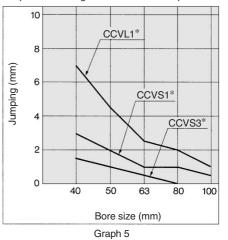
5. For response time of stop valve, refer to the list below

Model	Response time
CCVS	0.07 ± 0.015 sec.
CCVI	0 11 + 0 02 sec

Intermediate stop accuracy of CCVS: 50 mm/s x ±0.015 sec. = ±0.75 mm in case of 50 mm/s

Surge pressure

 When the cylinder is operated at high speeds and reaches the stroke end, surge pressure could be created in the rod side or in the head side. At this time, if the stop valve of the rod side or the head side is closed, the surge pressure could become sealed in, preventing the stop valve from operating. This can be solved by closing the stop value 1 to 2 seconds later.


_IN

Temperature rise

 When the cylinder is stopped at the stroke end, a speed control valve located opposite to the stroke end (which is the stop valve on the rod cover during retraction, and the stop valve on the head cover during extension) remains closed, the cylinder's internal pressure could increase with temperature, preventing the stop valve from opening. Therefore, do not close the stop valve in this condition.

Jumping of pressure compensating mechanism

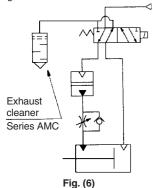
Be aware that the amount of jumping that is shown in Graph 5 applies to the pressure compensation mechanism during the operation of the cylinder. "Jumping" is a condition in which the cylinder operates without control at a speed that is higher than the control speed.

Air-hydro Unit Precautions

Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions on the products mentioned in this catalog, and refer to main text for more detailed precautions on every series.

Air Supply

 A mist separator prevents the intermixing of drainage, preventing the air-hydro unit from malfunctioning, and prolonging the life of the oil.


Environment

- Avoid use near fire.
- It cannot be used in the clean room.

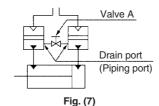
Mounting

- Install the converter vertically.
- Install the converter at a position that is higher than the cylinder. If placed lower than the cylinder, air accumulates in the cylinder. Use the air bleed valve on the cylinder to bleed the air. If the cylinder is not provided with an air bleed valve, loosen the hydraulic pipe to bleed.
- Leakage associated with the sliding movement inevitably occurs. In particular, with the single side hydro unit, the operating oil that leaks to the pneumatic side will be discharged from the switching valve, thus soiling the switching valve. Thus, install an exhaust cleaner (Series AMC). (Fig. (6))

When the oil case of the exhaust cleaner becomes full, operating oil will blow out of the exhaust cleaner. Therefore, open the drain valve on a regular basis.

Piping

- Before connecting the pipes, remove any foreign matter.
- The {T Series W (white)} nylon tube can be used for hydraulic piping. Self-aligning fittings can be used for hydraulic piping, but one-touch fittings cannot be used.
- Make sure that there are no extreme differences in the bore of the pipes used for hydraulic piping. Also check for protrusions or burrs.
- Prevent air from being drawn into the hydraulic piping.
- When operating a stop valve or a skip valve with a solenoid valve, considering it is an external pilot, provide pneumatic piping with 0.3 to 0.7 MPa of air pressure. The pressure for the pilot must be set to the operating pressure of the cylinder or higher.
- When operating a stop valve or a skip valve with a solenoid valve, considering it is an external pilot, provide pneumatic piping with 0.3 to 0.7 MPa of air pressure. The pressure for the pilot must be set to the operating pressure of the cylinder or higher.
- The stop and skip valves must be "normally closed".


Piping

- Be aware that the specified speed might not be attained if there is restriction in the fittings or there are 90° bends.
- Air bubbles could form during operation due to cavitation. To prevent this:
- Configure the piping from the cylinder to the converter to have an ascending gradient.
 Charter the hudeologicalities
- 2) Shorten the hydraulic piping.

Maintenance

Double-side hydro

• Even as a double side hydro unit, leakage occurs with the sliding movement of the air-hydro cylinder, increasing the converter's operating fluid in one area and decreasing it in the other. Fig. (7) provides a countermeasure circuit. Maintain the converter's oil level at an appropriate level by opening valve A.

Single-side hydro

- The basic composition of the air-hydro system is the double side hydro; however, it can also be used as a single side hydro. The viscosity of the operating oil of the single side hydro is approximately one half of the double side hydro. The speed will be approximately 1.4 times the date given on page 10-17-3. When the system is used as a single side hydro, air could become intermixed with the operating oil, leading to the symptoms listed below:
- 1) Cylinder's speed is not constant.
- 2) Stopping accuracy of the stop valve decreases.
- 3) Overrun of the skip valve increases.
- 4) The flow control valve with pressure compensator knocks (even with a small flow rate).

Therefore, it is necessary to check periodically to prevent air from intermixing with the oil. If the symptoms described above occur, air must be bled. In particular, to prevent "4)", use a double side hydro.

Lubrication

- If the converter is positioned higher than the cylinder:
- Make sure to move the cylinder's piston to the stroke end of the side that will be filled with oil.
 Open the air bleeder valve on top of the
- 3. If equipped with a stop valve, provide a pilot pressure of approximately 0.2 MPa to the stop valve, and maintain the stop valve in an open position through manual operation or by applying current.
- 4. Open the oil filler plug to fill with oil. When air no longer comes out intermixed with oil, close the cylinder's air bleeder valve. Make sure that the oil level is near the upper limit mark on the level gauge, and replenish with oil if needed.
- 5. Next, fill the opposite side with oil. Move the piston to the stroke end of the side that will be filled with oil, and perform steps 1 through 4 in the same sequence as described above.

If the converter is positioned lower than the cylinder:

After filling with oil as described in step 4 above, close the oil filler plug. Then, introduce air pressure of approximately 0.05 MPa into the converter's air port to push the oil into the cylinder. When air no longer comes out intermixed with oil, close the cylinder's air bleeder valve. Perform the remaining steps in the same way as

when the converter is located higher than the cylinder, in order to fill it with oil. * This operation necessarily causes air to

accumulate in the cylinder during the operation of the cylinder. Therefore, air must be bled on a regular basis.

Fluid (Hydraulic fluid)

Use petroleum based turbine hydraulic operating oil. The use of non-combustible operating oil could lead to problems.

An appropriate viscosity is about 40 to 100 mm²/s at the operating temperature.

Using ISO VG32 oil, the temperature range will be between 15 and 35°C. To operate in a temperature range that exceeds

that of the ISO VG32 oil, use ISO VG46 (25 to 45° C).

Turbine oil of ISO VG32

(Example) <No additive>

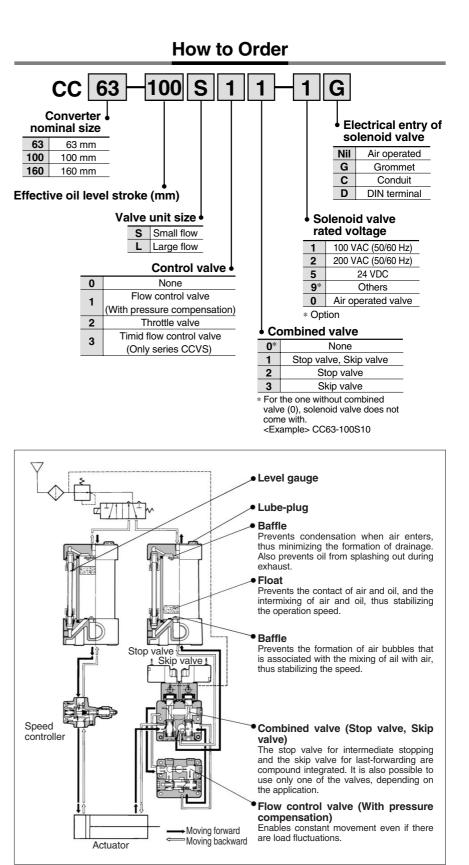
- Idemitsu Kosan Co., Ltd.: Turbine oil P32 Nippon Mitsubishi Oil Corp.:
- Turbine oil 32, Mitsubishi turbine 32 Maruzen: Turbine oil 32

<Additive>

Idemitsu Kosan Co., Ltd.: Dufny turbine oil 32 Nippon Mitsubishi Oil Corp.: FBK turbine 32, Diamond turbine oil 32 Maruzen: Turbine super 32

Air-hydro Unit Series CC

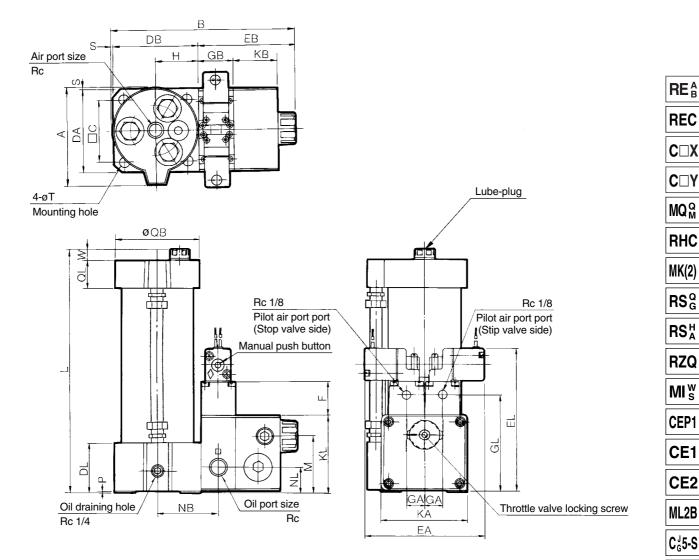
The air-hydro unit consists of a converter and a valve unit that are compactly integrated. It converts air pressure to an equivalent hydraulic pressure, and this hydraulic pressure is used for operating an actuator, thus solving the problem that is associated with the compression characteristics of air. Thus, in spite of using pneumatic equipment, it performs similarly to a hydraulic unit, operating at a constant speed during starting or in the presence of load fluctuations, and at the same time solving the problems of sticking and slipping associated with low speed operations. This unit is ideal for achieving accurate and constant speed of the cylinder, intermediate stopping, skip movement, or for slow operation of a rotary actuator.


A selection of valve unit is available to suit your application.

High cylinder driving speed.

Through the availability of a wide range of series in terms of converter capacity and valve unit flow rate control capability, speed as high as 200 mm/s (throttle valve) can be achieved with a ø80 cylinder. (Operating pressure: 0.5 MPa, unloaded, Piping: Bore 19 mm x 1 m)

Although the converter and the valve unit are integrated, they can also be operated by providing individual piping.



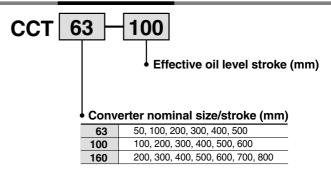
o

6

Hydro Unit

																				(mm)
Model	Air port size Rc	Oil port size Rc	A	в	с	DA	DB	DL	EA	EB	EL	F	GA	GB	GL	н	KA	КВ	KL	м
CC63-□S□1-□G	3/8	1/2	104	186	64	86	88	53	121.8	98	151.5	35	18	35	104	45	86	45	83	60
CC100-□S□1-G	1/2	1/2	139	223	92	116	123	61	121.8	98	156.5	35	18	35	109	65	86	45	88	65
CC100-□L□1-□G	1/2	3/4	139	259	92	116	123	61	133.8	134	185.5	40	24	50	140	65	116	66	112	85
CC160-□L□1-□G	3/4	3/4	202.5	319.5	144	180	183	60	133.8	134	181.5	40	24	50	136	93	116	66	108	81

Model	NB	NL	Р	QB	QL	s	Т*	w
CC63-□S□1-□G	62.5	28	3	86	30	0	11	9.5
CC100-□S□1-□G	82.5	33	5	120	32	2	13	7
CC100-□L□1-□G	92	33	5	120	32	2	13	7
CC160-□L□1-□G	120	29	0	185	46	2.5	20	7


L Dimension (mm)											
Effective oil level stroke	50	100	200	300	400	500	600	700	800		
CC63-□S□1-□G	228.5	278.5	378.5	503.5	603.5	728.5	_	_	_		
CC100-001-0G	_	286	386	511	611	736	836	_	_		
CC160-□L□1-□G	-	-	399	524	624	749	849	949	1049		
* Hexagon socket head cap screw is used for mounting hole.											

7

Air-hydro Converter Series CCT

How to Order

Specifications

Operating pressure	0 to 0.7 MPa
Proof pressure	1.05 MPa
Ambient and fluid temperature	5 to 50°C
Fluid	Turbine oil (40 to 100 mm ² /s)

Converter Standard Effective Oil Level Stroke/Effective Volume (cm³)

Converter nominal size		Limited flow*								
(mm)	50	100	200	300	400	500	600	700	800	(dm³/min)
63	150	300	600	890	1190	1480	—	—		36
100	_	750	1510	2260	3010	3770	4520	—	-	88
160	—		3660	5490	7320	9150	10980	12810	14640	217

*Limited flow shows the limit of converter oil level speed (0.2 m/s) which can maintain stability of converter oil level.

CCT40 — Effective oil level stroke

Because the CCT40 is a converter for an actuator with a small capacity, it cannot be made into an air-hydro unit. Instead, use an individual CC valve unit or a speed controller (AS2000, AS3000, AS4000, etc.) through a pipe connection.

Specifications									
Operating pressure	0 to 0.7 MPa								
Proof pressure	1.05 MPa								
Ambient and fluid temperature	5 to 50°C								
Fluid	Turbine oil (40 to 100 mm ² /s)								
Nominal size	40 mm								

Converter Standard Effective Oil Level Stroke/Effective Volume

Standard effective oil level stroke (mm)	50	100	150	200	300			
Effective volume (cm ³)	60	120	180	250	370			
Limited flow (dm ³ /min)			15					
* Limited flow shows the limit of converter oil level speed (0.2 m/s) which can maintain stability of								

converter oil level.

8

REB

REC

C□X

C□Y

MQM

RHC

MK(2)

RSG

RS^H

RZQ

MI s

CEP1

CE1

CE2

ML2B

C_G^J5-S

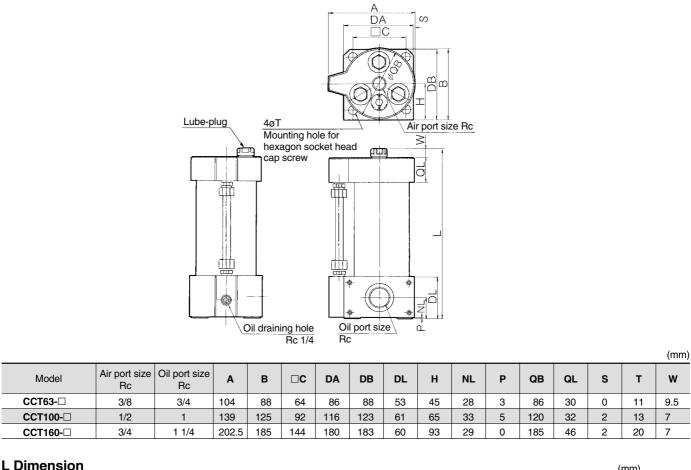
CV

MVGQ

CC

RB

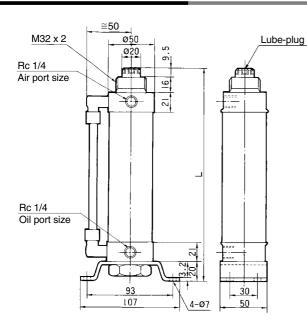
J


D-

-X

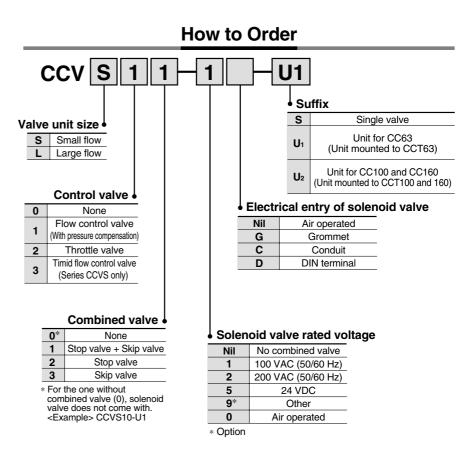
20-

Data


Air-hydro Converter: CCT63/CCT100/CCT160

Effective oil level stroke (mm)	50	100	200	300	400	500	600	700	800			
ССТ63-	228.5	278.5	378.5	503.5	603.5	728.5	—	_	_			
CCT100-□	_	286	386	511	611	736	836	—				
CCT160-□	_	—	399	524	624	749	849	949	1049			
· Have an evel the deep even with used for mounting												

* Hexagon socket head cap screw is used for mounting.


Air-hydro Converter: CCT40

L Dimensio	on (Effec	tive oil le	evel stro	ke)	(mm)
Effective oil level stroke (mm)	50	100	150	200	300
L	213.5	263.5	313.5	363.5	463.5

Valve Unit Series CCVS/CCVL

Specifications

		Combin	ed valve		С	ontrol valv	/e		
S	Specifications		Skip valve	Throttle valve		Flow control valve			
		Small flow	Large flow	Small flow	Large flow	Timid flow	Small flow	Large flow	
Operating	g pressure	0 to 0.	7 MPa	0 to 0.7 MPa 0.3 to 0.7 MPa				Pa	
External	pilot pressure	0.3 to 0	.7 MPa						
Proof pre	ssure		1.05 MPa						
Ambient	& Fluid temperature	5 to 50°C							
Fluid		Turbine oil (40 to 100 mm ² /s)							
Effective	Stop valve, Skip valve	40	88	—					
area	Control valve free open	-	_	35	77	18	24	60	
(mm²)	Control valve free flow	-	_	30	80	23	30	80	
Minimum	control flow (dm ³ /min)	-	_	0.	.3	0.04 0.06			
Pressure compensating ability		-	_	_	_	±10%			
Pressure	compensating range	-	_	_		Load ratio: 60% compared to theoretical output			
Valve typ	e	N.	C.	_	_	—			

REB

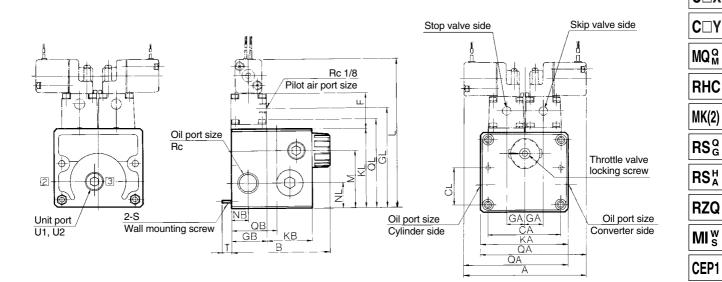
REC

C 🗆 X

Valve Unit Series CCVS/CCVL

Solenoid Valve Specifications of Combined Valve (Stop valve/Skip valve)

(Stop valve/Skip valve)									
Solenoid va	alve model	V0301-00-**							
External pil	ot pressure	0.3 to 1.0 MPa							
Rated	Standard	100/200 VAC, 24 VDC							
voltage	Option	110/220 VAC, 6/12/48/100 VDC							
A	10	Start-up	50 Hz: 14 VA 60 Hz: 13 VA						
Apparent power	AC	Holding	50 Hz: 9 VA 60 Hz: 8 VA						
P	DC	6.5 W							
Electrical	entry	Grommet (Standard), Conduit, DIN terminal							


Applicable Converter

Valve unit	Nominal size (mm)			
Small flow	63, 100			
Large flow	100, 160			

Solenoid Valve Function Plate

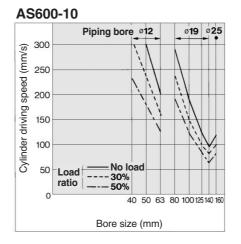
Solenc	oid valve type	N.C.*	1	1.0.**
	Stop valve	CL		OP
type	Skip valve	OP		CL
* Valve	opens where	n solenoid	valve	conducts

electricity. ** Valve opens when solenoid valve stops conducting electricity.

																						(11111)	
Model	Oil port size Rc	Α	В	CA*	CL*	F	GA	GB	GL	KA	KB	KL	L	М	NB	NL	QA	QB	QL	R	S	Т	
CCVS02-DG-S	1/2	—	_	72	36	35	18	35	101	86	45	80	148.5	_	17.5	25	103.9	45	88.2	1			1
CCVS□1-□G-S	1/2	121.8	98	72	36	35	18	35	101	86	45	80	148.5	57	17.5	25		—	_	2	M5	5.4	Ľ
CCVS□2-□G-S	1/2	—	98	72	36	35	18	35	101	86	45	80	148.5	57	17.5	25	103.9	—	88.2	1	х	to	1
CCVS□3-□G-S	1/2	—	98	72	36	35	18	35	101	86	45	80	148.5	57	17.5	25	103.9	—	88.2	1	0.8	7.5	Ľ
CCVS□0-S	1/2	—	98	72	36	_	_	35	_	86	45	80	—	57	17.5	25		—	88.2	_			(
CCVL02-DG-S	3/4	—	—	100	40	40	24	50	135	116	66	107	180.5	_	27	28	124.9	62	115	1			F
CCVL□1-□G-S	3/4	132.8	135	100	40	40	24	50	135	116	66	107	180.5	80	27	28	_	—	_	2	M6	10.5	1
CCVLD2-DG-S	3/4	—	135	100	40	40	24	50	135	116	66	107	180.5	80	27	28	124.9	_	115	1	х	to	Ľ
CCVL□3-□G-S	3/4	—	135	100	40	40	24	50	135	116	66	107	180.5	80	27	28	124.9	_	115	1	1	12.5	
CCVLD0-S	3/4	—	135	100	40	—	—	50	—	116	66	107	—	80	27	28		—	115	—			

* Pitch of mounting on the wall is CA and CL.

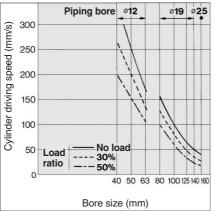
MI s CEP1 CE1 CE2 ML2B C_G^J5-S CV MVGQ CC RB J D--X 20-Data

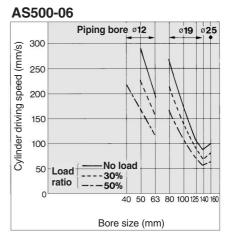

(mm)

If intricate speed control is unnecessary and the changes in speed due to load fluctuations can be tolerated, the pneumatic speed controller can be used as a control valve.

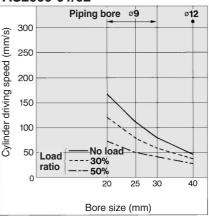
The minimum controllable flow volume of the speed controller is 3 dm³/min.

The speed controller and the converter must have individual pipe connections. They cannot be integrated into a unit.

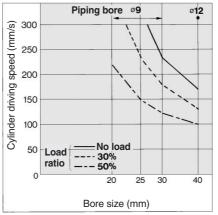


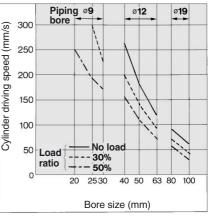


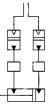
Maximum Driving Speed of Cylinders (Speed controller)


Conditions: Operating pressure — 0.5 MPa, Operating oil — Turbine oil Class 1 (ISO VG32), Piping length — 1 m

AS420-02/03/04




AS2000-01/02


AS3000-02/03

AS4000-02/03/04

Circuit diagram

Speed controller

Product Profile: Hydraulic Cylinders: Series CH

Compact hydraulic cylinder conforming to JIS Series CHKDB

Compact hydraulic cylinder Series CHKGB

- · Light and compact alminum body
- Auto switch can be mounted.
- •Auto switch mounting doesn't affect overall length
- •A wide range of operating pressures, bore sizes, and standard strokes make wide selections possible.

CHKGB

Compact hydraulic cylinder Double acting, single rod *Series CHQB*

Compact hydraulic cylinder Double acting, double rod *Series CHQWB*

- 3.5 MPa hydraulic cylinder with short overall length
- Makes more compact jigs and equipment a reality
- Auto switch can be mounted.
- •Auto switch mounting doesn't affect overall length.

Round type hydraulic cylinder Series CHN

Stainless tube, 7 MPa hydraulic cylinder of small bore size

	For details, refer to the catalog CAT. E111.							
Series	Bore size (mm)	Stroke (mm)	Action	Fluid	Nominal (Mi	•		
	20	5, 10, 15, 20, 25, 30 35, 40, 45, 50			CHKDB	CHKGB		
	25					16	ſ	
	32	5, 10, 15, 20, 25, 30		Hydraulic fluid Standard mineral hydraulic fluid W/O hydraulic fluid	10			
СНКДВ	02	35, 40, 45, 50, 75	Double acting, Single rod					
CHKGB	40						L	
	50	5, 10, 15, 20, 25, 30	Ű	O/W hydraulic fluid				
	63	35, 40, 45, 50, 75		,			Г	
	80	100						
	100						Ī	

For details, refer to the catalog CAT. E111.								
Series	Bore size (mm)	Stroke (mm)	Ac	tion	Fluid	Nominal pressure (MPa)	RZQ	
	20	5, 10, 15, 20, 25, 30 35, 40, 45, 50	CHQB	CHQWB			MI_{s}^{w}	
	32	5, 10, 15, 20, 25, 30		Double acting, Double rod	Hydraulic fluid Standard mineral hydraulic fluid W/O hydraulic fluid O/W hydraulic fluid	3.5	CEP1	
CHQB	40	35, 40, 45, 50, 75, 100						
CHQWB	50						CE1	
	63	10, 15, 20, 25, 30, 35					050	
-	80	40, 45, 50, 75, 100					CE2	
	100						ML2B	

For details, refer to the catalog CAT. E111.

Dava siza	0.	value		Nominal	
(mm)			Fluid	pressure (MPa)	J
	Standard	Long	Hydraulic fluid		
20	25 to 300			7	D-
25	25 to 400	800	hydraulic fluid W/O hydraulic fluid		-X
32	05 1 500	- 000			
40	25 to 500				20-
	20 25 32	(mm) (n 20 Standard 25 to 300 25 to 400 32 25 to 500	(mm) (mm) 20 Standard Long 25 to 300 25 to 400 800 32 25 to 500 800	(mm)(mm)Fluid20StandardLong2025 to 300Hydraulic fluid2525 to 4008003225 to 500000	Bore size (mm)Stroke (mm)Fluidpressure (MPa)20StandardLongHydraulic fluid2025 to 300Standard mineral hydraulic fluid72525 to 400800W/O hydraulic fluid O/W hydraulic fluid7

Data

REA

REC

C□X

C□Y

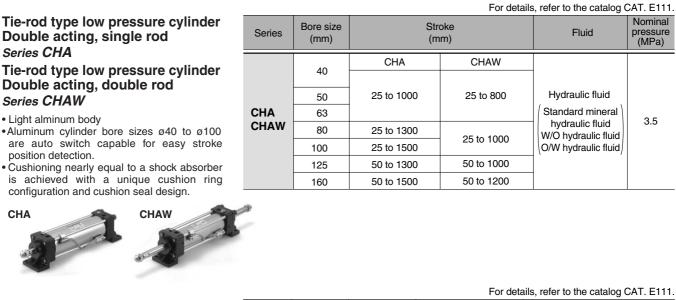
MQM

RHC

MK(2)

RSGQ

C_G^J5-S


CV

MVGQ

CC

SMC

Series CH

Compact hydraulic cylinder conforming to JIS Double acting, single rod Series CH2

CH2□

Series	Bore size (mm)	Stroke (mm)	Fluid	No	Nominal pressure (MPa)			
CH2E CH2F	32			CH2E	CH2F	CH2G, H		
	40	05 4- 000	Hydraulic fluid					
	50	25 to 800	Standard mineral hydraulic fluid W/O hydraulic fluid	3.5	7	14		
CH2G	63							
CH2H	80	25 to 1000	O/W hydraulic fluid					
	100	23 10 1000						

For details, refer to the catalog CAT. E111.

Series	Bore size (mm)	Stroke (mm)	Fluid	Nominal (Mi	•	
	32			CH2EW	CH2FW	
	40	25 to 800	Hydraulic fluid	3.5	7	
CH2EW	50		Standard mineral			
CH2FW	63		hydraulic fluid W/O hydraulic fluid			
	80	25 to 1000	O/W hydraulic fluid			
	100	23101000				

Double acting, double rod Series CH2 W Cushion seal type

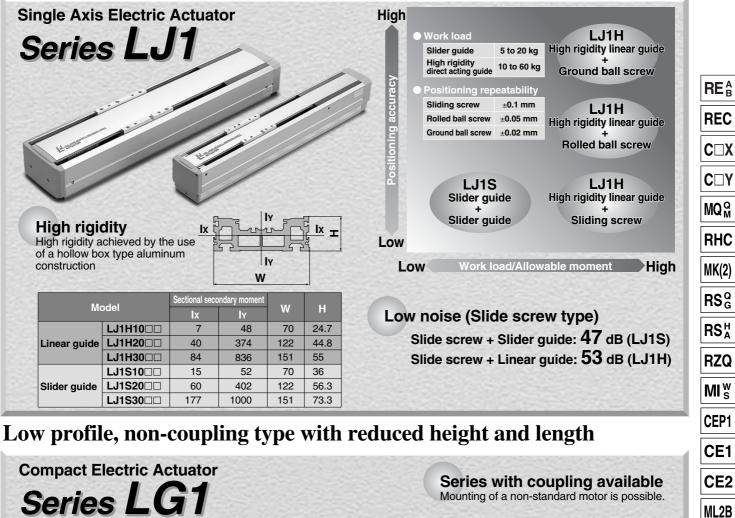
conforming to JIS

Compact hydraulic cylinder

CH2□W

• 10 MPa hydralic cylinder of bore size 40 to 100 Hydraulic cylinder conforming to ISO 6020-2 (JIS B 8367-2:2002) Series CHSG

• 16 MPa hydralic cylinder of bore size 32 to 100


For details, refer to the catalog CAT. ES110-12.

Series	Bore size (mm)	Stroke (mm)	Fluid	Nominal pressure (MPa)		
	32 (CHSG)	25 to 800				
	40		General mineral			
CHSD	50			10 MPa (CHSD)		
CHSG	63		hydraulic fluid	16 MPa (CHSG)		
	80	25 to 1000				
	100	23 10 1000				

*∕∂*SMC

Product Profile: Electric Actuators: Series LJ1/LG1

Two types of guide and three types of feed screw

For details, refer to the catalog CAT. E101.

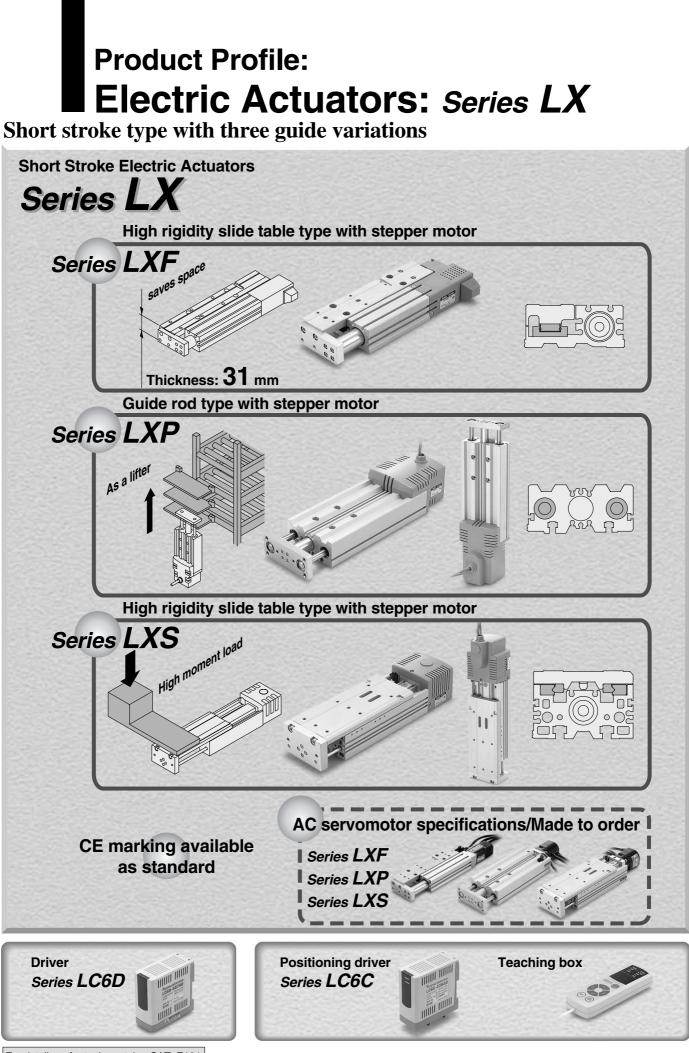
C_G^J5-S

CV

MVGQ

CC

RB


J

D-

-Х

20-

Data

