
Clean Room Rodless Cylinder Series CYP ø15, ø32

Magnetically coupled rodless cylinder for transfer in clean environments.

MX□

MTS

MY□

CY□

MG□

CX□

D-

-X

20-

Data

MTS

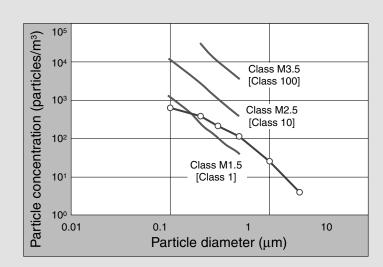
 $MY \square$

CY□

MG□

CX□

D-

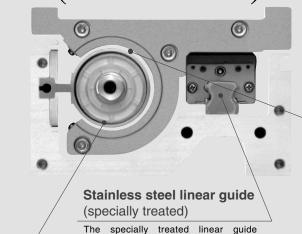

20-

Low particle generation: 1/20

(compared to previous series)

High cleanliness is achieved with non-contact construction of the cylinder tube exterior and a stainless steel linear guide (specially treated).

• Particle generation has been reduced to 1/20 compared to series 12-CY1B (previous SMC product) even without vacuum suction.

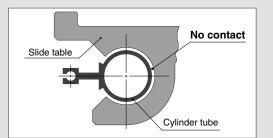

Note 2) The vertical axis shows the number of particles per unit volume (1 m³) of air which are no smaller than the particle size shown on the horizontal axis.

Note 3) The gray lines show the upper concentration limit of the cleanliness class bas on Fed.Std.209E-1992

Note 4) The plots indicate the 95% upper reliability limit value for time series data up to 500 thousand operation cycles, (Cylinder; CYP32-200, Workpiece weight; 5 kg. Average speed: 2000 mm/s)

Note 5) The data above provide a guide for selection but is not guaranteed

Long stroke (Max. 700 mm)

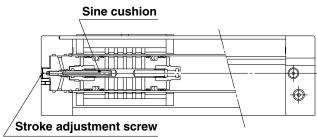


linearity and high precision

Non-contact construction

There is no particulate generation from sliding, because the construction avoids contact between the cylinder tube's exterior surface and the slide table's interior surface

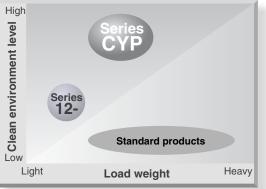
achieves low particulate generation, high


Shock-free

cylinder that can be used for

A magnetically coupled rodless

transfer in clean environments


A sine cushion is used at the end of the stroke. Smooth acceleration and deceleration are possible at 0.5 G or less.

Stroke adjustment

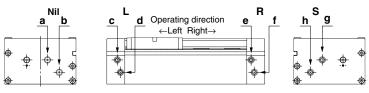
The stroke adjustment screw allows fine control of the stroke (±1 mm on each side)

■ Series Variations

Series Clean room rodless CYP12-CY1B

Special cylinder tube

A special cylinder tube is employed using extruded


aluminum material. Even long strokes are not subject to deflection because of direct attachment to the cylinder

body, and non-contact construction is achieved through

Bore size (mm) Guide type 6 | 10 | 15 | 20 | 25 | 32 | 40 | 50 | 63 High precision 12-CY1R

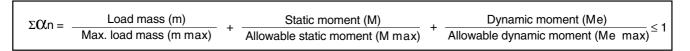
Piping port variations provide a high degree of freedom

Piping port positions can be selected to accommodate the installation.

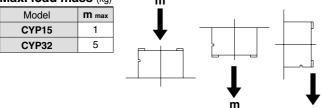
Note) Plugs are installed in ports other than those indicated for the model

Model	Nil		L		R		S	
Piping port position	а	b	С	d	е	f	g	h
Operating direction	Right	Left	Right	Left	Right	Left	Right	Left

Cleaned, assembled and double packaged in a clean room

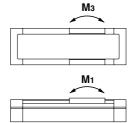

SMC

Series CYP Model Selection 1


Caution on Design (1)

The load mass allowable moment differs depending on the workpiece mounting method, cylinder mounting orientation and piston speed. In making a determination of usability, do not allow the sum ($\Sigma \alpha n$) of the load factors (αn) for each mass and moment to exceed "1".

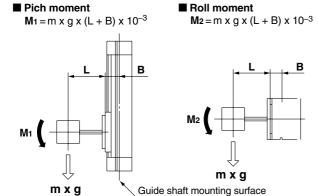
Load Mass

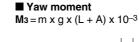

Max. load mass (kg)

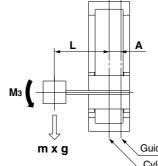
Moment •

Allowable moment

(Static moment/Dynamic moment)






			(111-111)
Model	M ₁	M ₂	Мз
CYP15	0.3	0.6	0.3
CYP32	3	4	3

Static Moment

Moment generated by the workpiece weight even when the cylinder is stopped

| (mm) | Model A B | CYP15 16.5 25.5 | CYP32 27.0 48.0

M1, 2, 3 : Moment [N-m]
m : Load mass [kg]
L : Distance to load center of gravity [mm]

to Bistance to load center of gravity [mil., B]: Distance to guide shaft [mm]: Gravitational acceleration [9.8 m/s²]

Guide shaft mounting surface m x g

Guide central axis

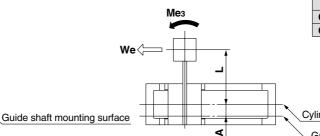
Cylinder central axis

Dynamic Moment

Moment generated by the load equivalent to impact at the stroke end

We = $5 \times 10^{-3} \times m \times g \times U$

We: Load equivalent to impact [N] U: Max. speed [mm/s] g: Gravitational acceleration [9.8 m/s²]


■ Pich moment $Me_1 = 1/3^* \cdot We (L + B) \cdot 10^{-3}$

* Average load coefficient

We⟨── ──

 $\mathbf{\omega}$

 Model
 A
 B

 CYP15
 16.5
 25.5

 CYP32
 27.0
 48.0

Cylinder central axis

Guide central axis

 $MX\square$

MTS

 $MY \square$

CY□

MG□

CX□

D-

-X

20-

Data

Series CYP

Model Selection 2

Selection Calculation –

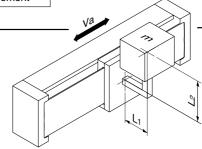
The selection calculation finds the load factors (α n) of the items below, where the total (α n) does not exceed 1.

$$\sum \alpha n = \alpha_1 + \alpha_2 + \alpha_3 \le 1$$

Item	Load factor (In	Note	
1. Max. load mass	$\alpha_1 = m/m_{max}$	Review m Mmax is the maximum load mass	
2. Static moment	CL2 = M/Mmax	Review M ₁ , M ₂ , M ₃ Mmax is the allowable moment	
3. Dynamic moment	C(3 = Me/Memax	Review Me1, Me3 Memax is the allowable moment	

Calculation Example

Operating Conditions


Cylinder: CYP32

Mounting: Horizontal wall mounting Maximum speed: U = 300 [mm/s]

Load mass: m = 1 [kg] (excluding mass of arm section)

L1 = 50 [mm]

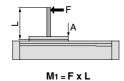
L2 = 50 [mm]

Item	Load factor (Xn	Note
1. Maximum load mass	0.1 = m/mmax = 1/5 = 0.20	Review m .
2. Static moment mxg Guide shaft mounting surface B L1	$M_2 = m \cdot g \cdot (L_1 + B) \cdot 10^{-3}$ $= 1 \cdot 9.8 \cdot (50 + 48) \cdot 10^{-3}$ $= 0.96 [N \cdot m]$ $0.2 = M_2/M_2 max$ $= 0.96/4$ $= 0.24$	Review M2. Since M1 & M3 are not generated, review is unnecessary.
3. Dynamic moment Mes We Guide central axis	We = $5 \times 10^{-3} \text{ m} \cdot \text{g} \cdot \text{U}$ = $5 \times 10^{-3} \cdot 1 \cdot 9.8 \cdot 300$ = 14.7 [N] Me3 = $1/3 \cdot \text{We} (L2 + A) \cdot 10^{-3}$ = $1/3 \cdot 14.7 \cdot (50 + 27) \cdot 10^{-3}$ = 0.38 [N·m] 0.3 = Me3/Me3 max = $0.38/3$ = 0.13	Review Mes.
We Guide shaft mounting surface	Me1 = $1/3 \cdot \text{We} \cdot (\text{L1} + \text{B}) \cdot 10^{-3}$ = $1/3 \cdot 14.7 \cdot (50 + 48) \cdot 10^{-3}$ = 0.48 [N·m] 0.4 = Me1 /Me1 max = $0.48/3$ = 0.16	Review Me1.

= 0.20 + 0.24 + 0.13 + 0.16

= 0.73

 $\Sigma \Omega n = 0.73 \le 1$ Therefore it can be used.



Series CYP Model Selection 3

Caution on Design (2)

Table Deflection Note)

Table deflection due to pitch moment load

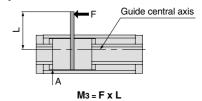


Table deflection due to roll moment load

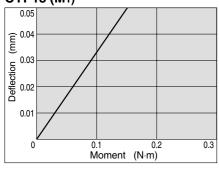
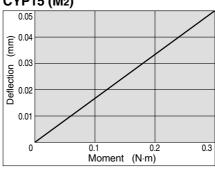
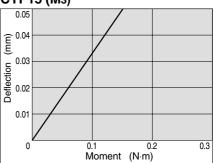
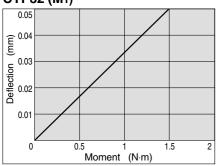

 $M_2 = F \times L$

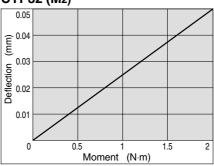
Table deflection due to yaw moment load

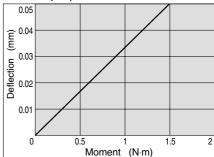


Note) Displacement of Section A when force acts on Section F


CYP15 (M₁)


CYP15 (M2)


CYP15 (M₃)


CYP32 (M₁)

CYP32 (M₂)

CYP32 (M₃)

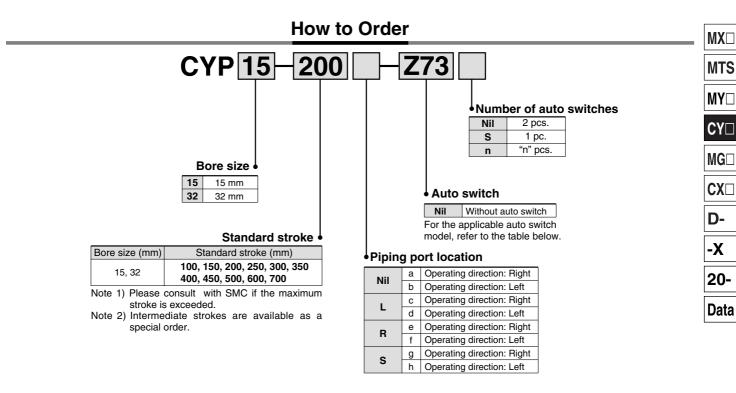
Vertical Operation

When using in vertical operation, prevention of workpiece dropping due to breaking of the magnetic coupling should be considered. The allowable load mass and maximum operating pressure should be as shown in the table below.

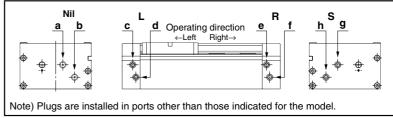
Model	Allowable load mass Mv (kg)	Maximum operating pressure Pv (MPa)
CYP15	1	0.3
CYP32	5	0.5

Intermediate Stop

The cushion effect (smooth start-up, soft stop) exists only before the stroke end in the stroke ranges indicated in the table below.


The cushion effect (smooth start-up, soft stop) cannot be obtained in an intermediate stop or return from an intermediate stop using an external stopper, etc.

When using an intermediate stop considering the above information, implement measures to prevent particulate generation and set the operating pressure to no more than 0.3 MPa.


Cushion Stroke

Model	Stroke (mm)
CYP15	25
CYP32	30

Clean Room Rodless Cylinder Series CYP ø15, ø32

Piping Port Locaition

Applicable Auto Switch/Refer to page 8-30-1 for further information on auto switches.

Applicable Auto Cwitch/Heler to page 0-00-1 for further information on auto switches.														
					Load voltage Auto switch model		ch model	Lead wire length (mm)*				·		
Type	Special		Indicator light	Wiring	_	С	AC	Electrical en	try direction	0.5	3	5	Applical	ble load
	function	entry	ligiti	(Output)	L	C	AC	Perpendicular	In-line	(Nil)	(L)	(Z)		
			.,	3-wire	_	5 V	_	_	Z 76	•	•	_	IC circuit	_
Reed switch	_	Grommet	Yes		04.1/	12 V	100 V	_	Z73	•	•	•	_	Relay,
			No	2-wire 24 \	24 V 5 V,	5 V, 12 V	100 V or less	_	Z80	•	•	_	IC circuit	PLC
	_			3-wire (NPN)		5 V 12 V		Y69A	Y59A	•	•	0	IC circuit	
				3-wire (PNP)				Y7PV	Y7P	•	•	0	IC circuit	
Solid state				2-wire		12 V		Y69B	Y59B	•	•	0	_	Relay,
switch	Diagnostic	Grommet Ye	Yes	3-wire (NPN)	4 5 V , 12	5 V 12 V	_	Y7NWV	Y7NW	•	•	0	10	PLC
	indication			3-wire (PNP)		0 1 , 12 1		Y7PWV	Y7PW	•	•	0	IC circuit	
	(2-color indication)			2-wire		12 V]	Y7BWV	Y7BW	•	•	0	_	

* Lead wire length symbols: 0.5 m Nil (Example) Y69B

5 m Z Y69BZ

^{**} Auto switches marked with a "O" symbol are produced upon receipt of order.

Series CYP

Specifications

Bore size (mm)	15	32	
Fluid	Air/Ine	ert gas	
Action	Double	acting	
Proof pressure	0.5N	/IPa	
Operating pressure range	0.05 to 0.3MPa		
Ambient and fluid temperature	-10 to 60°C		
Piston speed	50 to 300mm/s		
Lubrication	Non-	·lube	
Stroke adjustment	±1mm on each side (±2mm total)		
Cushion	Sine cushion (Air cushion)		
Port size	M5 x 0.8	Rc 1/8	

Weight

											(kg)
Model		Standard stroke (mm)									
	100	150	200	250	300	350	400	450	500	600	700
CYP15	1.2	1.4	1.6	1.7	1.9	2.0	2.2	2.4	2.5	2.8	3.2
CYP32	4.2	4.6	5.0	5.5	5.9	6.3	6.7	7.1	7.5	8.3	9.1

Magnetic Holding Force

Bore size (mm)	Magnetic holding force (N)		
15	59		
32	268		

Theoretical Output

				(N)		
Bore size (mm)	Piston area	Operating pressure (MPa				
	(mm)	0.1	0.2	0.3		
15	176	18	35	53		
32	804	80	161	241		

 $\mathsf{MX}\square$

MTS

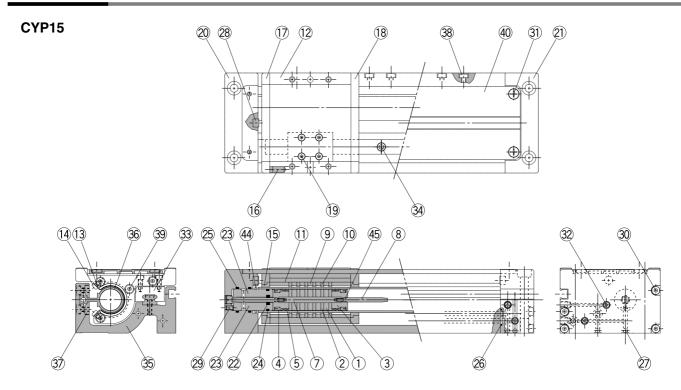
 $MY \square$

CY□

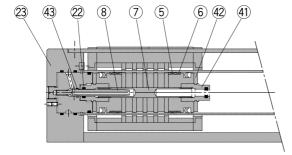
 $MG\square$

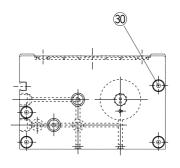
CX□

D-


-X

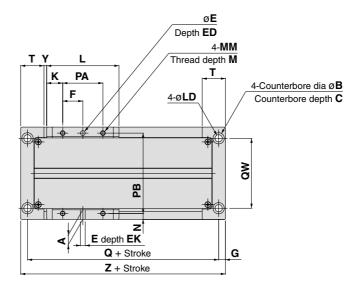
20-

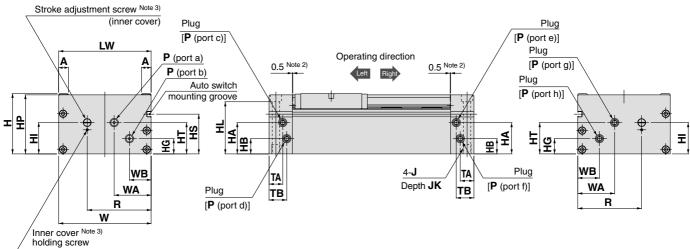

Data


Clean Room Rodless Cylinder Series CYP

Construction

Component Parts

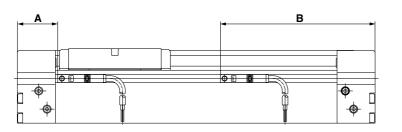

No.	Description	Material	Note
1	Magnet A	Rare earth magnet	
2	Piston side yoke	Rolled steel plate	Zinc chromated
3	Piston	Brass/Aluminum alloy	ø15: Electroless nickel plated, ø32: Chromated
4	Piston seal	NBR	
(5)	Wear ring A	Special resin	
6	Wear ring	Special resin	
7	Shaft	Stainless steel	
8	Cushion ring	Stainless steel/Brass	ø15: Electroless nickel plated
9	Magnet B	Rare earth magnet	
10	External slider side yoke	Rolled steel	Electroless nickel plated
11)	External spacer	Aluminum alloy	Electroless nickel plated
12	Slide table	Aluminum alloy	Electroless nickel plated
13	Insertion guide plate	Stainless steel	
14)	Round head Phillips screw	Carbon steel	Nickel plated
15	Hold spacer	Aluminum alloy	Electroless nickel plated
16	Magnet	Rare earth magnet	
17)	Side plate A	Aluminum alloy	Electroless nickel plated
18	Side plate B	Aluminum alloy	Electroless nickel plated
19	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
20	Plate A	Aluminum alloy	Clear hard anodized
21)	Plate B	Aluminum alloy	Clear hard anodized
22	Cushion seal	NBR	


No.	Description	Material	Note		
23	Inner cover	Aluminum alloy	Clear hard anodized		
24	Cylinder tube gasket	NBR			
25	O-ring	NBR			
26	O-ring	NBR			
27)	Steel ball	Carbon steel			
28	Bumper	Polyurethane			
29	Hexagon socket head set screw	Chrome molybdenum steel	Nickel plated		
30	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated		
31)	Round head Phillips screw	Stainless steel	Nickel plated		
32	Hexagon socket head plug	Chrome molybdenum steel	Nickel plated		
33	Linear guide	Stainless steel			
34)	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated		
35	Body	Aluminum alloy	Clear hard anodized		
36	Cylinder tube	Aluminum alloy	Hard anodized		
37)	Tube attaching bracket	Aluminum alloy	Clear hard anodized		
38	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated		
39	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated		
40	Top cover	Aluminum alloy	Clear hard anodized		
41)	Cushion seal holder	Aluminum alloy	Chromated		
42	Bumper	Urethane	CYP32 only		
43	O-ring	NBR			
44	C type snap ring for shaft	Carbon tool steel			
45	O-ring	NBR			

Series CYP

Dimensions

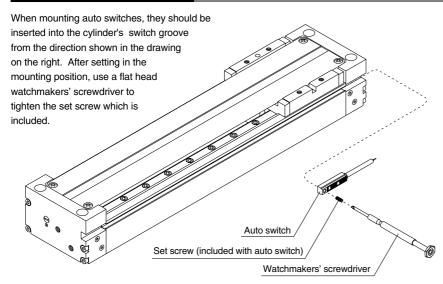
																					(mm)
Model	Α	В	С	E	ED	EK	F	G	Н	НА	НВ	HG	HI	HL	HP	HS	HT	,	ſ	JK	K
CYP15	8	9.5	5.4	4H9 ^{+0.030}	9.5	4	12.5	6.5	45	19.5	8.5	8.5	23	38.6	44	27	19.5	M6	x 1	10	21
CYP32	12	14	8.6	6H9 ^{+0.030}	13	6	25	8.5	75	39	19	19	39	64.9	73.5	49.5	39	M10	x 1.5	12	20
Model	L	LD	LW	MM	M	N	F	•	PA	PB	Q	QW	R	Т	TA	ТВ	W	WA	WB	Υ	Z
CYP15	67	5.6	69	M4 x 0.7	6	4.5	M5 x	0.8	25	60	105	48	45	23	13	18	69	32	17	2.5	118
CYP32	90	8.6	115	M6 x 1	8	7.5	Rc	1/8	50	100	138	87	79.5	29	17	22	115	46	27	3.5	155


Note 1) These dimension drawings indicate the case of piping port location "Nil".

Note 2) These dimensions indicate the protruding portion of the bumper.

Note 3) Refer to "Specific Product Precautions" [Cushion Effect (Sine Cushion) and Stroke Adjustment] on page 8-17-13.

Series CYP With Auto Switch


Proper Auto Switch Mounting Position Detection (Detection at stroke end)

Proper Auto Switch Mounting Position

Auto switch		Α		В			
model Cylinder model	D-Z7□ D-Z80	D-Y7□W D-Y7□WV	D-Y5□ D-Y6□ D-Y7P D-Y7PV	D-Z7□ D-Z80	D-Y7□W D-Y7□WV	D-Y5□ D-Y6□ D-Y7P D-Y7PV	
CYP15		24.5		93.5			
CYP32		33		122			

Mounting of Auto Switch

Note) When tightening the auto switch set screw (included with the auto switch), use a watchmakers' screwdriver with a handle about 5 to 6 mm in diameter. The tightening torque should be approximately 0.05 to 0.1 N·m.

Operating Range

Auto switch model Cylinder model	D-Z7□ D-Z80	D-Y7□W D-Y7□WV D-Y5□ D-Y6□ D-Y7P D-Y7PV				
CYP15	6.5	2.5				
CYP32	9.5	3				

Note) Operating ranges are standards including hysteresis, and are not guaranteed. (variations on the order of ±30%)

Large variations may occur depending on the surrounding environment.

MX□

MTS

MY□

CY□

MC

MG□

CX

D-

-X

20-

Data

Series CYP Specific Product Precautions 1 Be sure to read before handing.

Handling

⚠ Caution

- Open the inner package of the double packaged clean series inside a clean room or other clean environment.
- 2. Perform parts replacement and disassembly work in a clean room after exhausting compressed air in the piping outside the clean room.

Mounting

⚠ Caution

 Take care to avoid striking the cylinder tube with other objects or handling it in a way that could cause deformation.

The cylinder tube and slider units have a non-contact construction. For this reason, even a slight deformation or slippage of position can cause malfunction and loss of durability, as well as a danger of degrading the particulate generation characteristics.

2. Do not scratch or gouge the linear guide by striking it with other objects.

Since the linear guide is specially treated for maximum suppression of particulate generation due to sliding, even a slight scratch can cause malfunction and loss of durability, as well as a danger of degrading the particulate generation characteristics.

- 3. Since the slide table is supported by precision bearings, do not apply strong impacts or excessive moment when mounting workpieces.
- 4. Be sure to operate the cylinder with the plates on both sides secured.

Avoid applications in which the slide table or only one plate is secured.

5. When changing the ports to be used, be sure that unused ports are securely sealed.

Take sufficient care in sealing unused ports, because if ports are not properly sealed air can leak from the ports and particulate generation characteristics can be degraded.

Operation

⚠ Caution

1. The maximum operating pressure for the clean rodless cylinder is 0.3 MPa.

If the maximum operating pressure of 0.3 MPa for the clean rodless cylinder is exceeded, the magnetic coupling can be broken, causing a danger of malfunction or degradation of particulate generation characteristics, etc.

2. The product can be used with a direct load applied within the allowable range, but careful alignment is necessary when connecting to a load having an external guide mechanism.

Since alignment variations increase as the stroke gets longer, use a connection method which can absorb these variations and consider measures to control particulate generation.

Operation

∧ Caution

When used for vertical operation, use caution regarding possible dropping due to separation of the magnetic coupling.

When used for vertical operation, use caution as there is a possibility of dropping due to separation of the magnetic coupling if a load (pressure) greater than the allowable value is applied.

4. Do not operate with the magnetic coupling out of position.

If the magnetic coupling is out of position, push the external slider by hand (or the piston slider with air pressure) back to the proper position at the stroke end.

5. Do not supply lubrication, as this is a non-lube product.

The interior of the cylinder is lubricated at the factory, and lubrication with turbine oil, etc., will not satisfy the product's specifications.

6. Never reapply lubricant.

Never reapply lubricant, as there may be a degradation of particulate generation or operation characteristics.

Speed Adjustment

⚠ Caution

1. A throttle valve for clean room use is recommended for speed adjustment. (Please consult with SMC regarding equipment and methods to be used.)

Speed adjustment can also be performed with a meter-in or meter-out type speed controller for clean room use, but it may not be possible to obtain smooth starting and stopping operation.

Throttle Valves and Dual Speed Controllers for Recommended Speed Adjustment of CYP Cylinders

	Series	Model						
Throttle valv	е	CYP15	CYP32					
Metal body	Elbow type	10-AS1200-M5-X216	10-AS2200-01-X214					
piping type	In-line type	10-AS1000-M5-X214	10-AS2000-01-X209					
		10-AS1201F-M5-04-X214	10-AS2201F-01-04-X214					
	Elbow type (throttle valve)	10-AS1201F-M5-06-X214	10-AS2201F-01-06-X214					
	(tillottle valve)		10-AS2201F-01-06-X214					
Resin body	Universal type (throttle valve)	10-AS1301F-M5-04-X214	10-AS2301F-01-04-X214					
with		10-AS1301F-M5-06-X214	10-AS2301F-01-06-X214					
One-touch			10-AS2301F-01-06-X214					
fitting	In-line type	10-AS1001F-04-X214	10-AS2001F-04-X214					
	(throttle valve)	10-AS1001F-06-X214	10-AS2001F-06-X214					
	Dual type	10-ASD230F-M5-04	10-ASD330F-01-06					
	(speed controller)	10-ASD230F-M5-06	10-ASD330F-01-08					

2. In the case of vertical mounting, a system with a reduced pressure supply circuit installed on the down side is recommended. (This is effective against upward starting delays and for conservation of air.)

Series CY1F

Specific Product Precautions 2

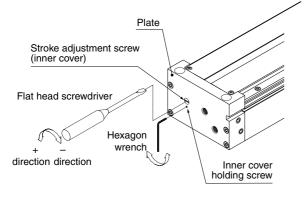
Be sure to read before handing.

Cushion Effect (Sine Cushion) and Stroke Adjustment

⚠ Caution

1. A sine cushion (smooth start, soft stop) function is included in the standard specifications.

Due to the nature of a sine cushion, adjustment of the cushion effect is not possible. There is no cushion needle adjustment as in the case of conventional cushion mechanisms.


2. The stroke end adjustment is a mechanism to adapt the slide table's stroke end position to a mechanical stopper on other equipment, etc.

(Adjustment range: Total of both sides ± 2 mm) To ensure safety, perform adjustment after shutting off the drive air, releasing the residual pressure and implementing drop prevention measures, etc.

- 1) Loosen the inner cover holding screw with a hexagon wrench, etc.
- 2) To match the position with a mechanical stopper on other equipment, etc., rotate the stroke adjustment screw (inner cover) to the left or right with a flat head screwdriver to move the inner stopper back and forth. Approximately 1 mm of adjustment is possible with one rotation.
- 3) The maximum adjustment on one side is ± 1 mm. A total adjustment of approximately ± 2 mm is possible using both sides.
- 4) After completing the stroke end adjustment, tighten the inner cover holding screw with a hexagon wrench, etc.

Inner Cover Holding Screw Tightening Torque [N·m]

Model	Screw size	Tightening torque				
CYP15	M3 x 0.5	0.3				
CYP32	M6 x 1	2.45				

Maintenance

∧ Caution

 Never disassemble the cylinder tube or linear guide, etc.

If disassembled, the slide table may touch the outside surface of the cylinder tube resulting in a degradation of particulate generation characteristics.

2. Please consult with SMC when replacing seals and bearings (wear rings).

Particulate Generation Characteristics

⚠ Caution

Graph (1)

100

50

40

30

20

operation cycles (10,000

Total

1. In order to maintain the particulate generation grade, use operation of 500 thousand cycles or travel distance of about 400 km as a standard. (Graph (1) below)

If operation is continued beyond the recommended values, lubrication failure of the linear guide and loss of particulate generation characteristics may occur.

r MX□ I.

MTS

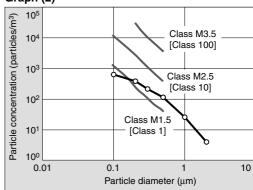
MY□

CY□

MG□

CX

D-


-X

20-

Data

Graph (2)

100

300 400 500

Stroke (mm)

Note 1) This chart indicates the level of cleanliness inside the measurement chamber.

Note 2) The vertical axis shows the number of particles per unit volume (1 m³) of air which are no smaller than the particle size shown on the horizontal axis.

Note 3) The gray lines show the upper concentration limit of the cleanliness class based on Fed. Std. 209E-1992.

Note 4) The plots indicate the 95% upper reliability limit value for time series data up to 500 thousand operation cycles.

(Cylinder, CYP32-200, Workpiece, weight, 5, kg.

(Cylinder: CYP32-200, Workpiece weight: 5 kg, Average speed: 200 mm/s)

Note 5) The data above provides a guide for selection but is not guaranteed.