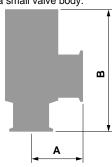


High Vacuum Angle Valve

XL Series

Light weight and compact
Uniform baking temperature
High fluorine resistance
Low outgassing
Little heavy metal contamination


Series XL

High Vacuum

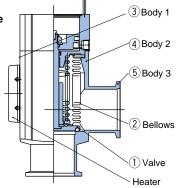
Angle Valve

Light weight & compact

Large conductance with a small valve body.

Series XLA (mm)

COHOC ALA	,			
Model	A *	B mm	Weight kg (lb)	Conductance *
XLA-16	40	103	0.25 (0.55)	5
XLA-25	50	113	0.45 (0.99)	14
XLA-40	65	158	1.1 (2.43)	45
XLA-50	70	170	1.6 (3.53)	80
XLA-63	88	196	2.9 (6.39)	160
XLA-80	90	235	5.0 (11.02)	200

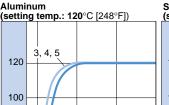

* Common to all series.

1in=25.4mm

Uniform baking temperature

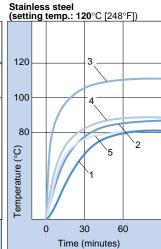
Excellent thermal conductivity results in a uniform temperature for the entire valve body and a marked decrease in the condensation of gases inside the

High fluorine resistance


Excellent resistance against fluorine corrosion

Low outgassing

Low outgassing makes it possible to use a lower capacity pump and also to shorten evacuation time


Little heavy metal contamination

The valve does not contain heavy metals such as Ni (nickel) or Cr (chrome) and a low sputtering yield also helps to minimize heavy metal contamination of semiconductor wafers.

1 2

30 Time (minutes)

°F=(1.8x°C)+32°

XLA/XLAV (Bellows seal, Single acting)

- · Bellows type is particulate free and completely cleaned.
- Pressure balance mechanism allows unrestricted exhaust direction.

XLC/XLCV (Bellows Seal, Double acting)

- · Bellows type is particulate free and completely cleaned.
- · Pressure balance mechanism allows unrestricted exhaust direction.
- · Overtravel mechanism maintains constant O-ring compression (size 50, 63, 80).

XLF/XLFV (O-ring seal, Single acting)

- Low gas entrainment with employment of O-ring seal
- High speed response and long service life.
- Particulates are reduced through special surface treatment of shaft seal.

XLG/XLGV (O-ring seal, Double acting)

• Low gas entrainment with employment of O-ring seal • Pressure balance mechanism allows unrestricted system.

XLG/XLGV (O-ring seal, Double acting) continued

Temperature

- High speed response and long service life.
- · Overtravel mechanism maintains constant O-ring compression (size 50, 63, 80).
- Particulates are reduced through special surface treatment of shaft seal.

XLD/XLDV (2 stage control, Single acting)

- · Initial exhaust valve and main exhaust valve have been integrated (2 stage flow control valve).
- · Makes compact system design and reduced piping
- · Minimizes particulates by eliminating turbulence during exhaust
- · Prevents pump overload.
- · Initial exhaust valve flow is adjustable and adjustment can be locked.

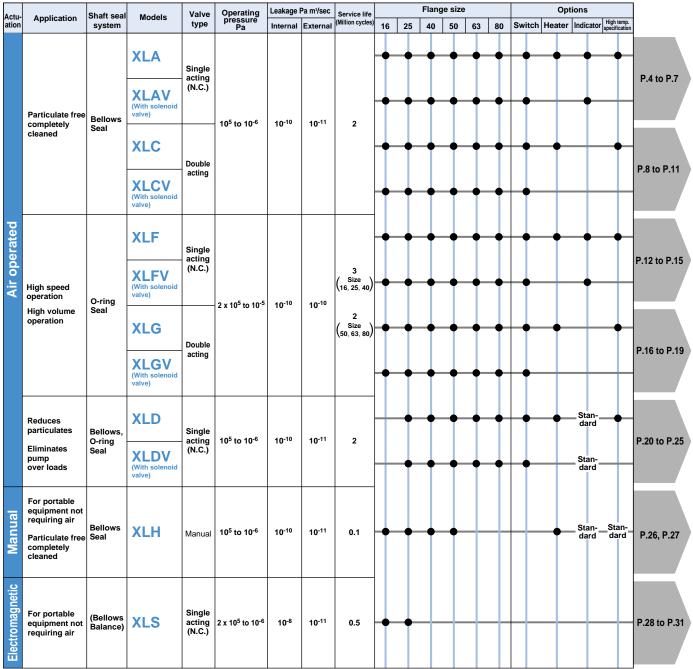
XLH (Bellows seal, Manual operation)

- · Bellows type is particulate free and completely cleaned.
- exhaust direction

XLH (Bellows seal, Manual operation) continued

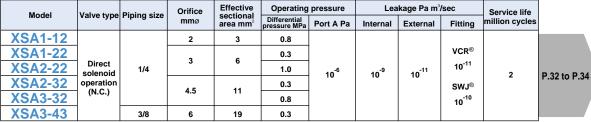
- Low actuation torque (0.5N·m or less).
- · Spring provides standard sealing load.
- · Handle height is the same when valve is open or
- Indicator to confirm opening and closing of valve is standard equipment.

XLS (Bellow pressure balance, Normally closed solenoid)


- · Particulates are reduced because there are no sliding metal parts.
- Pressure balance mechanism allows unrestricted exhaust direction.
- A control power supply circuit for solenoid valve drive has been made standard.
- Can be used in portable equipment since air for drive is not necessary.

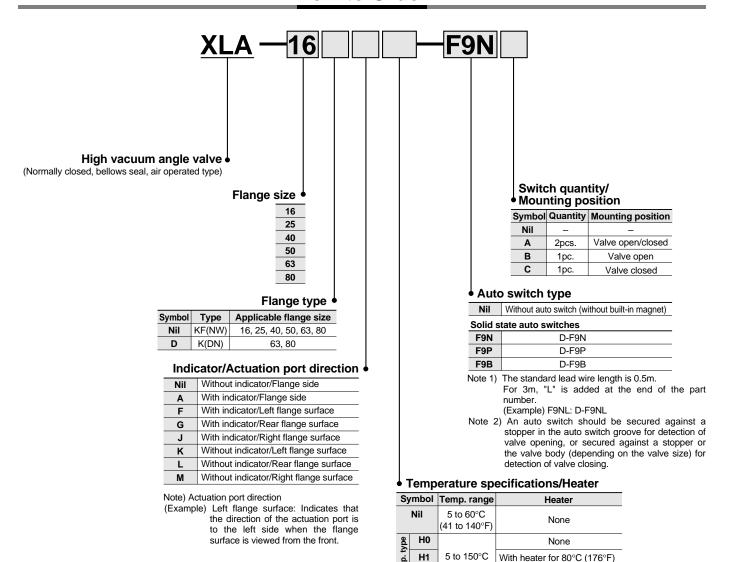
XSA (Direct solenoid operation)

- · Solenoid valve with metal seal fittings (VCR®/Swagelok®)
- Particulates are reduced because there are no sliding metal parts.
- Improved reverse pressure performance.


High Vacuum Angle Valve

* Heater and high temperature specifications are not available with switches. 1Pa=0.145 x 10-3psi 1MPa=145psi

Straight Solenoid Valve (with Metallic Seal Fitting)



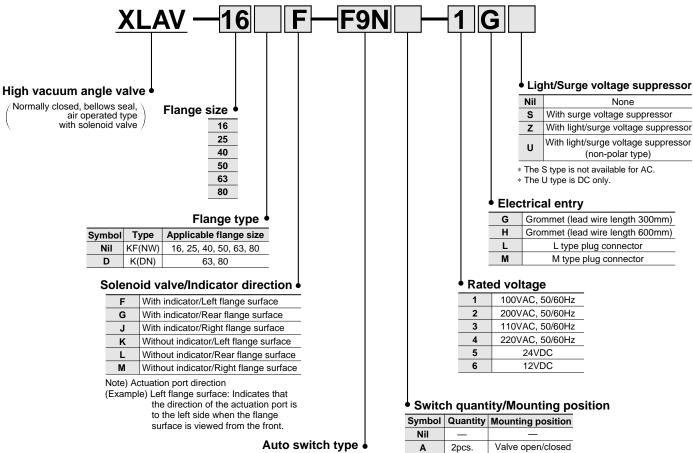
Differential Pressure: Indicates the maximum operable pressure difference between port P and port A. In the case of 0.8MPa, when port A is a vacuum, port P can be pressurized to 0.8MPa (7kgf/cm2G).

^{*} VCR® Fitting and Swagelok® Fitting are registered trade marks of the Cajon Company and the Crawford Fitting Company Inc. respectively.

Option specifications/Combination table

<u> </u>	option specimentality combination table										
	0-6		Model								
	Option specifications	Symbol	XLA-16	XLA-25	XLA-40	XLA-50	XLA-63	XLA-80			
	Indicator	Α	•	•	•	•	•	•			
type	Without heater	H0	•	•	•	•	•	•			
temp. t	With heater for 80°C (176°F)	H1	_	•	•	•	•	•			
h ter	With heater for 100°C (212°F)	H2	_	_	•	•	•	•			
High	With heater for 120°C (248°F)	Н3	_	•	•	•	•	•			

(41 to 302°F)


H2 High

Н3

With heater for 100°C (212°F)

With heater for 120°C (248°F)

Note) Auto switches cannot be mounted in the case of high temperature types.

Auto switch type

Nil	Without auto switch (without built-in magnet
Solid s	tate auto switches
F9N	D-F9N
F9P	D-F9P
F9B	D-F9B

Note 1) The standard lead wire length is 0.5m. For 3m, "L" is added at the end of the part number.

(Example) F9NL: D-F9NL

Note 2) An auto switch should be secured against a stopper in the auto switch groove for detection of valve opening, or secured against a stopper or the valve body (depending on the valve size) for detection of valve closing.

This model has indicator, auto switch and K(DN) flange options, but high temperature/heater options are not available.

Note 2) Solenoid valves

1pc.

1pc.

В

С

XLAV-16, 25, 40, 50: SYJ319 XLAV-63, 80: SYJ519 Example) SYJ319-1GS, etc.

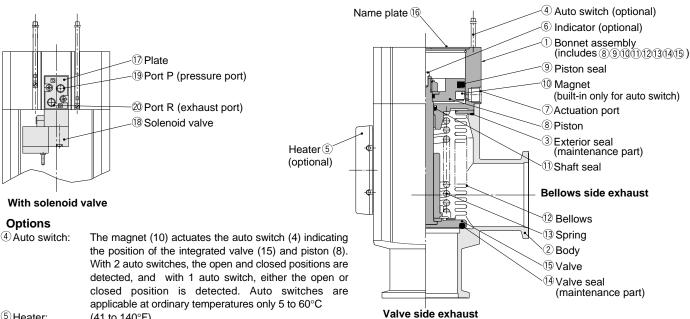
Valve open valve closed

For further details on solenoid valves, refer to the SMC solenoid valve catalog "SYJ 300, 500, 700" (E143-B).

Note 3) Solenoid valves are shipped facing downward (flange side), but can be rotated to face upward.

XLAV

Specifications


		VII 4 0 0 4 0	W 400 a	VII 4 0 0 4 0	\// 400 Fe	VII 4 0 0 0 0 0	W 400 00			
Model		XLA(V)-16	XLA(V)-25	XLA(V)-40	XLA(V)-50	XLA(V)-63	XLA(V)-80			
Valve type			Normall	y closed (pressu	rize to open, spr	ing seal)				
Fluid		Non-corrosive gas for aluminum alloy (A6063) and SUS304/316								
Operating temperature °C	XLA	5 to 60°C (41 to 140°F) [high temperature type: 5 to 150°C (41 to 302°F)]								
Operating temperature C	XLAV			5 to 50°C (4	11 to 122°F)					
Operating pressure Pa {Torr}			Atmosphe	eric pressure to	1 x 10 ⁻⁶ {760 to 7	.5 x 10 ⁻⁹ }				
Conductance #s Note 1)		5	14	45	80	160	200			
Leakage Pa m³/s	Internal	1.3	x 10 ⁻¹⁰ {1 x 10 ⁻⁹ } ;	at ordinary temp	eratures, excludi	ng gas transmis	sion			
{Torr ds}	External	1.3 x 10 ⁻¹¹ {1 x 10 ⁻¹⁰ } at ordinary temperatures, excluding gas transmission								
Operating time s Note 2) 0.05 0.1 0.21 0.24 0.26						0.26	0.28			
Flange type			KF (NW)		KF (NW), K (DN)			
Principle materials		Body:	Aluminum alloy	Bellows: Stair	less steel Sea	al: FKM (fluoro ru	ıbber)			
Surface treatment		E	xterior: Hard and	odized Interior	: Machined for c	ean environmen	t			
Actuation pressure MPa				0.4 to 0.7 (5	58 to 101psi)					
Actuation port size	XLA	M5 (10-32	2 nominal)		Rc(P	T) 1/8				
Actuation port size	XLAV	N	//15 (10-32 nomina	al) Ports P, R ₁ /F	₹2		/8(Port P): inal) Ports R1/R2			
Actuating solenoid valve recommended C	v factor (XLC)	0.05≤	0.06≤	0.09≤	0.11≤	0.3≤	0.35≤			
Service life (Million cycles)					2					
Weight kg (lb)	XLA	0.25 (0.55)	0.46 (1.01)	1.1 (2.43)	1.6 (3.52)	2.9 (6.39)	5.0 (11.02)			
Weight kg (ib)	XLAV	0.29 (0.64)	0.49 (1.08)	1.14 (2.51)	1.64 (3.61)	2.96 (6.52)	5.06 (11.16)			

Note 1) Conductance is the same as that of an elbow with the same dimensions.

Note 2) The time required for 90% valve movement when an actuation pressure of 0.5MPa {72psi} is applied. There is a difference of about 20% in this value at the upper and lower pressure limits.

Note 3) For valve heater specifications, refer to "Common Option Specifications, [1] Heaters" on page 37.

Construction /Operation

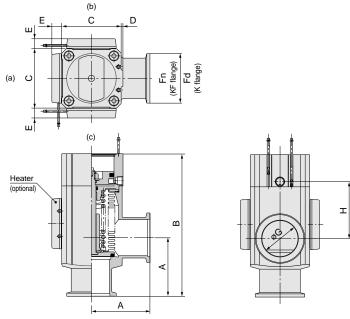
5 Heater:

Simple heating is performed using thermistors. The valve body can be heated to approximately 80, 100 or 120°C (176, 212 or 248°F) depending on the heater option and the valve size. The type and number of thermistors to be used will vary depending upon size and setting temperature. In the case of high

6 Indicator: temperature specifications, the bonnet assembly (1) is a heat resistant structure.

(41 to 140°F).

When the valve is open, an orange marker about 1mm in height appears in the center of the name plate (16).


Operation principle

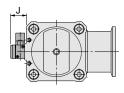
By applying pressure from the actuation port (7), the piston (8), which is sealed by the shaft seal (11) and the piston seal (9), overcomes the force of the spring (13), and the valve (15) opens. With the exhaust of air pressure, the valve (15) is closed by the force of the spring (13) and is sealed by the valve seal (14). In the case of the XLAV, port P(19) is normally pressurized, and the valve (15) opens when the solenoid valve (18) is turned ON and closes when it is turned OFF. Operation is the same as that of the XLA.

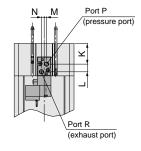
Dimensions (mm)

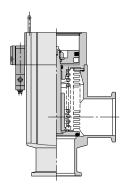
1in = 25.4mm

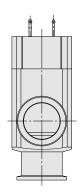
XLA/Air operated type

	-								(mm)
Model	Α	В	С	D	E Note 1)	Fn	Fd	G	Н
XLA-16	40	103	38	1	_	30	_	17	40
XLA-25	50	113	48	1	12	40		26	39
XLA-40	65	158	66	2	11	55	_	41	63
XLA-50	70	170	79	2	11	75	_	52	68
XLA-63	88	196	100	3	11	87	95	70	69
XLA-80	90	235	117	3	11	114	110	83	96

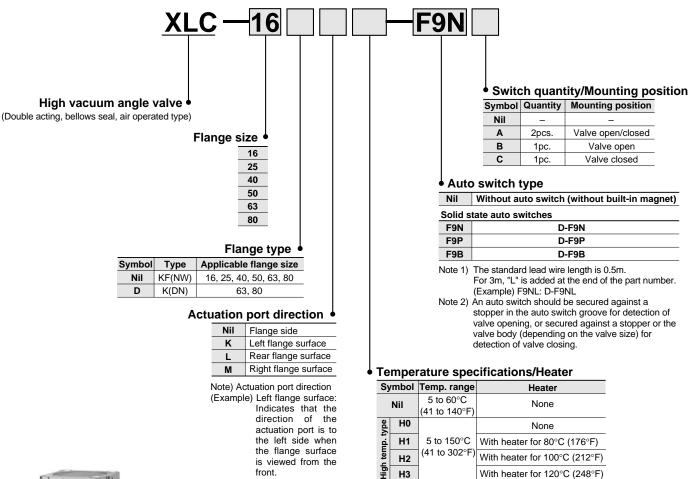

Note 1) Dimension E applies when heater option is included. (lead wire length: approx. 1m)


Note 2) (a), (b) and (c) in the above drawing indicate heater mounting positions.


Moreover, heater mounting positions will differ depending on the type of heater.


For further details, refer to mounting positions under Replacement heaters/Part Nos. on page 46.

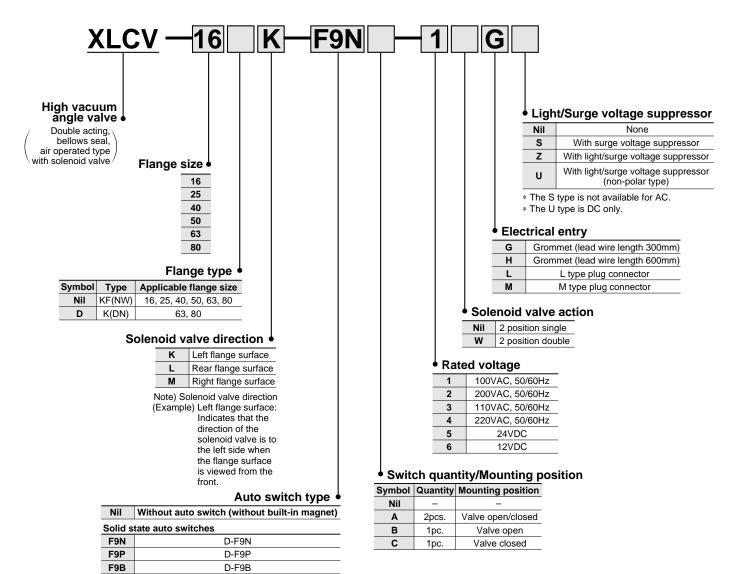
XLAV/With solenoid valve



(mm)

Model	J	K	L	M	N
XLAV-16	16.5	13	8.5	3	3
XLAV-25	16.5	14	8.5	3	3
XLAV-40	17.5	23	8.5	3	3
XLAV-50	17.5	25	8.5	3	3
XLAV-63	29	29	12	4	2
XLAV-80	29	39	12	4	2

^{*} Other dimensions are the same as XLA.



XLC

High temperature type combination table

High temperature enecifications	Symbol	Model							
High temperature specifications	Symbol	XLC-16	XLC-25	XLC-40	XLC-50	XLC-63	XLC-80		
Without heater	H0	•	•	•	•	•	•		
With heater for 80° (176°F)	H1	_	•	•	•	•	•		
With heater for 100°C (212°F)	H2	_	_	•	•	•	•		
With heater for 120°C (248°F)	Н3	_	•	•	•	•	•		

Note) Auto switches cannot be mounted in the case of high temperature types.

Note 1) The standard lead wire length is 0.5m.

For 3m, "L" is added at the end of the part number. (Example) F9NL: D-F9NL

Note 2) An auto switch should be secured against a stopper in the auto switch groove for detection of valve opening, or secured against a stopper or the valve body (depending on the valve size) for detection of valve closing.

Note 1) Option specifications/Combinations

This model has auto switch and K(DN) flange options, but high temperature/heater options are not available.

Note 2) Solenoid valves

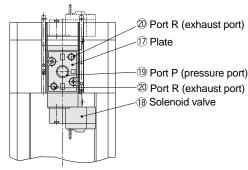
2 position single: XLCV-16, 25, 40, 50: SYJ3190 XLCV-63, 80: SYJ5190 2 position double: XLCV-16, 25, 40, 50: SYJ3290 XLCV-63, 80: SYJ5290

Examples) SYJ3190-1GS SYJ3290-1GS

For further details on solenoid valves, refer to the SMC solenoid valve catalog "SYJ 3000, 5000, 7000" (N237).

Note 3) The direction of solenoid valve coils cannot be changed.

Specifications


Model		XLC(V)-16	XLC(V)-25	XLC(V)-40	XLC(V)-50	XLC(V)-63	XLC(V)-80		
Valve type			Double acti	ng (dual operatio	on), pressurize to	open/close	,		
Fluid		Non-corrosive gas for aluminum alloy (A6063) and SUS304/316							
One resting to manage turn °C	XLC	5 to 60°C (41 to 140°F) [high temperature type: 5 to 150°C (41 to 302°F)]							
Operating temperature °C	XLCV			5 to 50°C (4	11 to 122°F)				
Operating pressure Pa {Torr}			Atmosphe	eric pressure to 1	1 x 10 ⁻⁶ {760 to 7	.5 x 10 ⁻⁹ }			
Conductance #s Note 1)		5	14	45	80	160	200		
Leakage Pa m³/s	Internal	1.3	x 10 ⁻¹⁰ {1 x 10 ⁻⁹ }	at ordinary temp	eratures, exclud	ing gas permeat	ion		
{Torr ds}	External	1.3	x 10 ⁻¹¹ {1 x 10 ⁻¹⁰ }	at ordinary tem	peratures, exclud	ding gas permea	tion		
Operating time s Note 2)		0.08	0.15	0.35	0.4	0.54	0.7		
Flange type			KF (NW)		KF (NW), K (DN)		
Principle materials		Body: Aluminum alloy Bellows: Stainless steel Seal: FKM (fluoro rubber)							
Surface treatment		Е	xterior: Hard and	odized Interior	: Machined for cl	ean environmen	t		
Actuation pressure MPa				0.3 to 0.6 {4	13 to 87psi}				
Actuation port size	XLC	M5 (10-32	2 nominal)		Rc(P	T) 1/8			
Actuation port size	XLCV	N	//15 (10-32 nomina	al) Ports P, R ₁ /R	R ₂	Rc(PT) 1/8(Port P): M5(10-32 nominal) Ports R1/R2			
Actuating solenoid valve recommended C	v factor (XLC)	0.05≤	0.06≤	0.09≤	0.11≤	0.3≤	0.35≤		
Service life (Million cycles)					2				
Weight kg (lb)	XLC	0.28 (0.62)	0.46 (1.01)	1.1 (2.43)	1.7 (3.75)	3.1 (6.83)	5.1 (11.24)		
Troigit kg (ib)	XLCV	0.32 (0.71)	0.5 (1.10)	1.15 (2.54)	1.74 (3.84)	3.16 (6.97)	5.16 (11.38)		

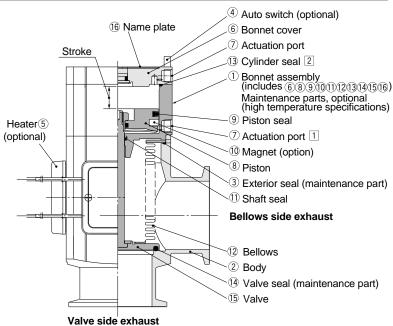
Note 1) Conductance is the same as that of an elbow with the same dimensions.

Note 2) The time required for 90% valve movement when an actuation pressure of 0.5MPa {72psi} is applied. There is a difference of about 20% in this value at the upper and lower pressure limits.

Note 3) For valve heater specifications, refer to "Common Option Specifications, [1] Heaters" on page 37.

Construction/Operation

With solenoid valve


Operating principle

By applying pressure from the actuating port [1]-(7), the piston (8), sealed by the shaft seal (11) and the piston seal (9), is operated opening the valve. (actuation port [2]-(7) is released)

Conversely, by applying pressure to actuation port [2]-(7), the piston (8), sealed by the cylinder seal (13) and the piston seal (9), is operated closing the valve (15) which is sealed by the valve seal (14). (actuation port [1]-(7) is released)

In the case of the XLCV, port P (19) is normally pressurized, and the valve (15) opens when the solenoid valve (18) is turned ON, and closes when it is turned OFF. Moreover, in the case of a double solenoid, the valve moves to the side where the solenoid valve (18) is turned ON. Operation is the same as that of the XLC.

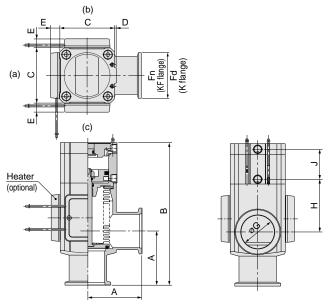
For sizes 50, 63 and 80, the valve is sealed with a standard load by means of an overrun mechanism.

Options

⑤ Heater:

Auto switch: The magnet (10) actuates the auto switch (4) indicating the position of the integrated valve (15) and piston (8). With 2 auto switches, the open and closed positions are detected, and with 1 auto switch, either the open or closed position is detected. Auto switches are applicable at ordinary temperatures only 5 to 60°C (41° to 140°F).

Simple heating is performed using thermistors. The valve body can be heated to approximately 80, 100 or 120°C (176, 212, 248°F), depending on the heater option and the valve size. The type and number of thermistors to be used will vary depending upon size and setting temperature. In the case of high temperature specifications, the bonnet assembly (1) is a heat resistant structure.

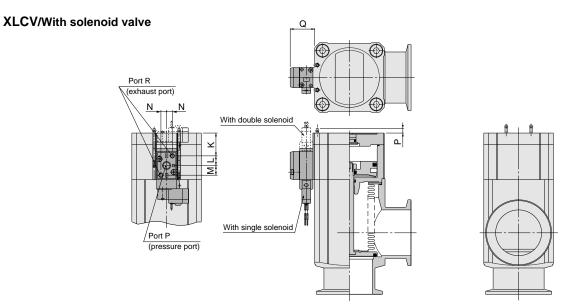


High Vacuum Angle Valve

Dimensions (mm)

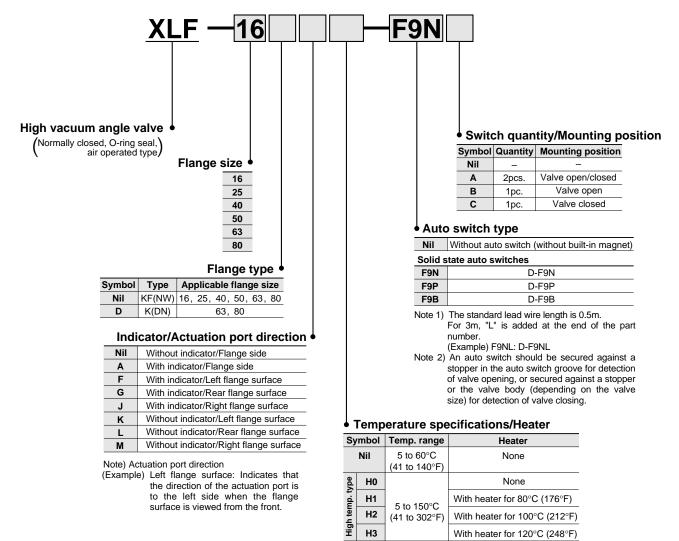
1in = 25.4mm

XLC/Air operated type



										(mm)
Model	Α	В	С	D	E Note 1)	Fn	Fd	G	Н	J
XLC-16	40	110	38	1	_	30	_	17	40	26
XLC-25	50	120	48	1	12	40	_	26	39	28
XLC-40	65	171	66	2	11	55	_	41	63	36
XLC-50	70	183	79	2	11	75	_	52	68	38
XLC-63	88	209	100	3	11	87	95	70	69	45
XLC-80	90	250	117	3	11	114	110	83	96	56

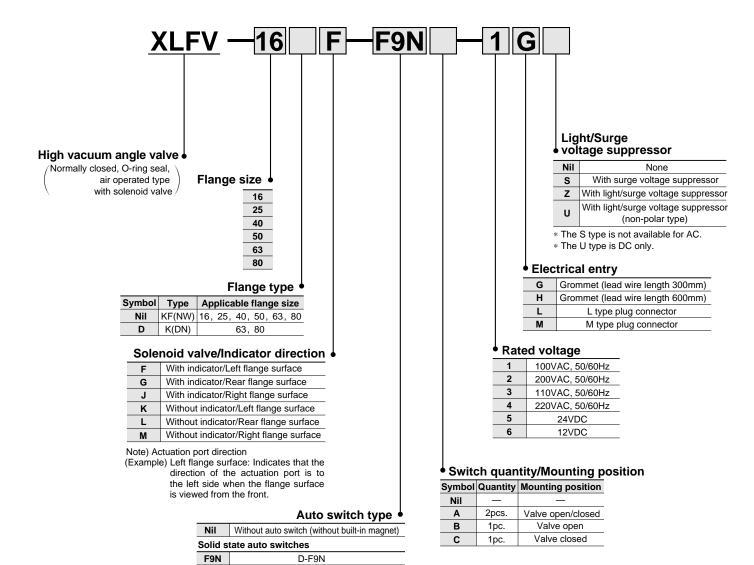
Note 1) Dimension E applies when heater option is included. (lead wire length: approx. 1m)
Note 2) (a), (b) and (c) in the above drawing indicate heater mounting positions.


Moreover, heater mounting positions will differ depending on the type of heater.

For further details, refer to mounting positions under Replacement heaters/Part Nos. on page 46.

						(mm)
Model	K	L	M	N	Р	Q
XLCV-16	14	9	6.5	3	17	16.5
XLCV-25	16	9	6.5	3	15	16.5
XLCV-40	29	9	6.5	3	2	17.5
XLCV-50	42	9	6.5	3	6	17.5
XLCV-63	32	11	11	6.5	_	29
XLCV-80	45	11	11	6.5	_	29

^{*} Other dimensions are the same as XLA.



XLF

Option specifications/Combination table

	Ontion appoifications				Мо	del		
Option specifications		Symbol	XLF-16	XLF-25	XLF-40	XLF-50	XLF-63	XLF-80
	Indicator	Α	•	•	•	•	•	•
type	Without heater	H0	•	•	•	•	•	•
temp. t	With heater for 80°C (176°F)	H1	_	•	•	•	•	•
h ter	With heater for 100°C (212°F)	H2	_	_	•	•	•	•
High	With heater for 120°C (248°F)	Н3	_	•	•	•	•	•

Note) Auto switches cannot be mounted in the case of high temperature types.

Note1) The standard lead wire length is 0.5m. For 3m, "L" is added at the end of the part number.

D-F9P

D-F9B

(Example) F9NL: D-F9NL

F9P

F9B

Note 2) An auto switch should be secured against a stopper in the auto switch groove for detection of valve opening, or secured against a stopper or the valve body (depending on the valve size) for detection of valve closing.

Note 1) Option specifications/Combinations

This model has indicator, auto switch and K(DN) flange options, but high temperature/heater options are not available.

Note 2) Solenoid valves

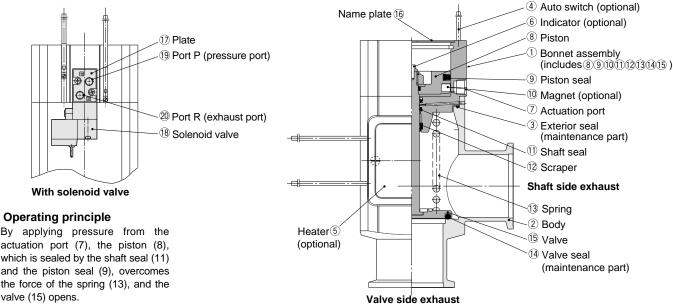
XLFV-16, 25, 40: SYJ319 XLFV-50, 63, 80: SYJ519 Example) SYJ319-1GS

For further details on solenoid valves, refer to the SMC solenoid valve catalog "SYJ300, 500, 700" (N220).

Note 3) Solenoid valves are shipped facing downward (flange side), but can be rotated to face upward.

Specifications

Model		XLF(V)-16	XLF(V)-25	XLF(V)-40	XLF(V)-50	XLF(V)-63	XLF(V)-80		
Valve type			Normall	y closed (pressu	rize to open, spri	ing seal)			
Fluid		Non-corrosive gas for aluminum alloy (A6063) and SUS304/316							
Operating temperature °C	XLF	5 to 6	60°C (41 to 140°	F) [high temper	ature type: 5 to	150°C (41 to 302	2°F)]		
Operating temperature C	XLFV			5 to 50°C (4	1 to 122°F)				
Operating pressure Pa {Torr}			Atmosphe	eric pressure to 1	x 10 ⁻⁶ {760 to 7	.5 x 10 ⁻⁹ }			
Conductance #s Note 1)		5	14	45	80	160	200		
Leakage Pa m³/s	Internal	1.3	x 10 ⁻¹⁰ {1 x 10 ⁻⁹ } ;	at ordinary tempo	eratures, excludi	ng gas transmiss	sion		
{Torr ds}	External	1.3 x 10 ⁻¹¹ {1 x 10 ⁻¹⁰ } at ordinary temperatures, excluding gas transmission							
Operating time ms Note 2)	XLF	30	35	40	45	65	85		
Operating time ins **** 5	XLFV	30	35	60	60	100	130		
Flange type			KF (NW)		KF (NW), K (DN)		
Principle materials		Body:	Aluminum alloy	Bellows: Stain	less steel Sea	ıl: FKM (fluoro ru	ibber)		
Surface treatment		Е	xterior: Hard and	odized Interior	: Machined for cl	ean environmen	t		
Actuation pressure MPa				0.4 to 0.7 (5	8 to 101psi)				
Actuation port size	XLF	M5 (10-3)	2 nominal)		Rc(P	T) 1/8			
Actuation port size	XLFV		M5 (10-32 nom	inal) Ports P, R			/8(Port P): ominal) (Port)		
Actuating solenoid valve recommended C	v factor (XLF)	0.06≤	0.09≤	0.11≤	0.15≤	0.4≤	0.5≤		
Service life (Million cycles)			3			2			
Weight kg (lb)	XLF	0.25 (0.55)	0.45 (0.99)	1.1 (2.43)	1.6 (3.52)	3.0 (6.61)	4.8 (10.58)		
Height Ng (ID)	XLFV	0.29 (0.64)	0.49 (1.08)	1.14 (2.51)	1.66 (3.65)	3.06 (6.75)	4.86 (10.72)		


Note 1) Conductance is represented by the value of an elbow with the same dimensions.

Note 2) The operating time with no solenoid valve (XLF) is the same value as the case of the solenoid valve piped directly to the bonnet, where the actuation pressure is 0.5MPa (72psi). The operating time becomes faster under high pressure.

Note 3) For valve heater specifications, refer to "Common Option Specifications, [1] Heaters" on page 37.

(5) Heater:

Construction/Operation

Operating principle

actuation port (7), the piston (8), which is sealed by the shaft seal (11) and the piston seal (9), overcomes the force of the spring (13), and the valve (15) opens.

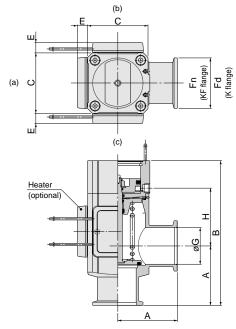
With the exhaust of air pressure, the valve (15) is closed by the force of the spring (13) and is sealed by the valve seal (14).

In the case of the XLFV, port P (19) is normally pressurized, and the valve (15) opens when the solenoid valve (18) is turned ON, and closes when it is turned OFF. Operation is the same as that of the XLF.

Options For selections, refer to item 3, model number and option symbol table.

④ Auto switch: The magnet (10) actuates the auto switch (4) indicating the position of the integrated valve (15) and piston (8). With 2 auto switches, the open and closed positions are detected, and with 1 auto switch, either the open or closed position is detected. Auto switches are applicable at ordinary temperatures only 5 to 60°C (41 to 140°F).

Simple heating is performed using thermistors. The valve body can be heated to approximately 80, 100 or 120°C (176, 212, or 248°F), depending on the heater option and the valve size. The type and number of thermistors to be used will vary depending upon size and setting temperature. In the case of high temperature specifications, the bonnet assembly (1) is a heat resistant structure. This is not available with solenoid valve.


6 Indicator: When the valve is open, an orange marker about 1mm in height appears in the center of the name plate (16).

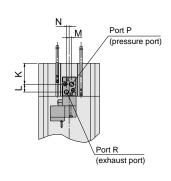
High Vacuum Angle Valve

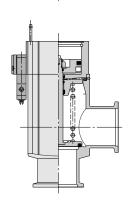
Dimensions (mm)

1in=25.4mm

XLF/Air operated type

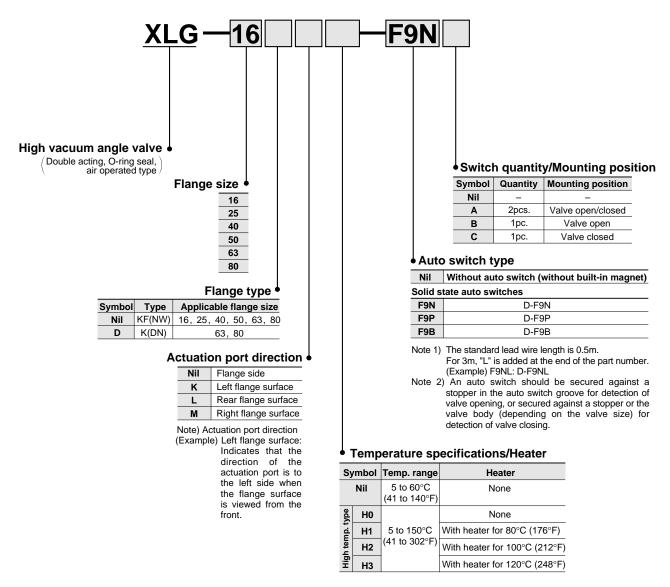
									(mm)
Model	Α	В	С	D	E Note 1)	Fn	Fd	G	Н
XLF-16	40	103	38	1	_	30	_	17	40
XLF-25	50	113	48	1	12	40	_	26	39
XLF-40	65	158	66	2	11	55	_	41	63
XLF-50	70	170	79	2	11	75	_	52	68
XLF-63	88	196	100	3	11	87	95	70	69
XLF-80	90	235	117	3	11	114	110	83	96

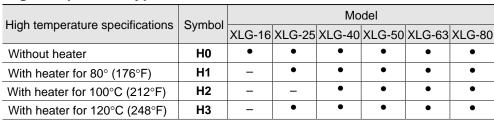

Note 1) Dimension E applies when heater option is included. (lead wire length: approx. 1m)


Note 2) (a), (b) and (c) in the above drawing indicate heater mounting positions.

Moreover, heater mounting positions will differ depending on the type of heater.

For further details, refer to mounting positions under Replacement heaters/Part Nos. on page 46.

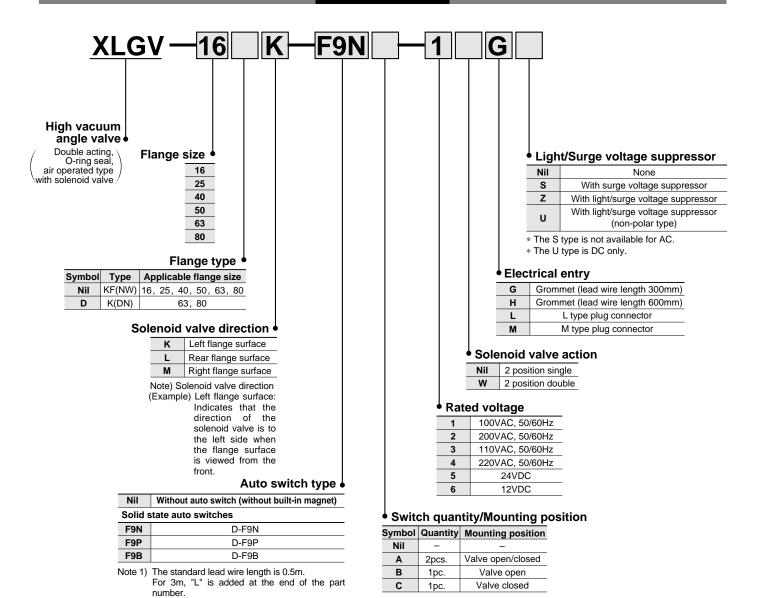

XLFV/With solenoid valve

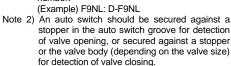


(mm) K М Ν Model XLFV-16 16.5 13 8.5 3 3 XLFV-25 16.5 14 8.5 3 3 XLFV-40 17.5 23 8.5 3 3 XLFV-50 2 28 23 12 4 XLFV-63 29 29 12 4 2 2 XLFV-80 29 39 12 4

^{*} Other dimensions are the same as XLF.

High temperature type combination table


Note) Auto switches cannot be mounted in the case of high temperature types.



XLG

Air Operated Type/with Solenoid Valve

How to Order

Note 1) Option specifications/Combinations

This model has auto switch and K(DN) flange options, but high temperature/heater options are not available.

Note 2) Solenoid valves

2 position single: XLGV-16, 25, 40: SYJ3190 XLGV-50, 63, 80: SYJ5190

2 position double: XLGV-16, 25, 40: SYJ3290 XLGV-50, 63, 80: SYJ5290

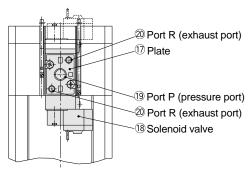
Examples) SYJ3190-1GS SYJ3290-1GS

For further details on solenoid valves, refer to the SMC solenoid valve catalog "SYJ 3000, 5000, 7000" (N237)

Note 3) The direction of solenoid valves cannot be changed.

XLGV

Specifications

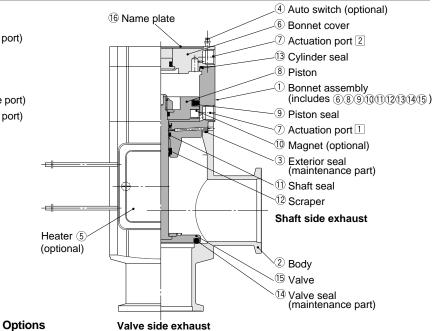

Model		XLG(V)-16	XLG(V)-25	XLG(V)-40	XLG(V)-50	XLG(V)-63	XLG(V)-80		
Valve type			Double acti	ng (dual operation	on), pressurize to				
Fluid		Non-corrosive gas for aluminum alloy (A6063) and SUS304/316							
Operating temperature °C	XLG	5 to 60°C (41 to 140°F) [high temperature type: 5 to 150°C (41 to 302°F)]							
Operating temperature C	XLGV			5 to 50°C (4	1 to 122°F)				
Operating pressure Pa {Torr}			Atmosphe	eric pressure to 1	1 x 10 ⁻⁶ {760 to 7	.5 x 10 ⁻⁹ }			
Conductance #s Note 1)		5	14	45	80	160	200		
Leakage Pa m³/s	Internal	1.3	x 10 ⁻¹⁰ {1 x 10 ⁻⁹ } a	at ordinary tempo	eratures, excludi	ng gas transmiss	sion		
{Torr ds}	External	1.3 x	10 ⁻¹¹ {1 x 10 ⁻¹⁰ }	at ordinary temp	eratures, exclud	ing gas transmis	sion		
Operation time ma Note 2)	XLG	40	45	60	60	95	105		
Operating time ms Note 2)	XLGV	45	50	85	90	132	150		
Flange type		KF (NW), K (DN)							
Principle materials		Body: Aluminum alloy Bellows: Stainless steel Seal: FKM (fluoro rubber)							
Surface treatment		Е	xterior: Hard and	odized Interior	: Machined for cl	ean environmen	t		
Actuation pressure MPa				0.3 to 0.6 (43 to 87psi)				
Actuation port size	XLG	M5 (10-32	2 nominal)		Rc(P	T) 1/8			
Actuation port size	XLGV	N	15 (10-32 nomina	al) Ports P, R ₁ /R	R 2	· ' '	/8(Port P): al) (Ports R1/R2)		
Actuating solenoid valve recommended C	v factor (XLG)	0.06≤	0.09≤	0.11≤	0.15≤	0.4≤	0.5≤		
Service life (Million cycles)			3			2			
Weight kg (lb)	XLG	0.28 (0.62)	0.46 (1.01)	1.1 (2.43)	1.7 (3.74)	3.1 (6.83)	5.1 (11.24)		
Troight ng (lb)	XLGV	0.32 (0.71)	0.5 (1.10)	1.14 (2.51)	1.76 (3.88)	3.16 (6.97)	5.16 (11.38)		

Note 1) Conductance is the same as that of an elbow with the same dimensions.

Note 2) The operating time with no solenoid valve (XLG) is the same value as the case of the solenoid valve piped directly to the bonnet, where the actuation pressure is 0.5MPa (72psi). The operating time becomes faster under high pressure.

Note 3) For valve heater specifications, refer to "Common Option Specifications, [1] Heaters" on page 37.

Construction/Operation



Operating principle

By applying pressure from the actuating port [1]-(7), the piston (8), sealed by the shaft seal (11) and the piston seal (9), is operated opening the valve (actuation port [2]-(7) is released). Conversely, by applying pressure to actuation port [2]-(7), the piston (8), sealed by the cylinder seal (13) and the piston seal (9), is operated closing the valve (15) which is sealed by the valve seal (14) (actuation port [1]-(7) is released). In the case of the XLCV, port P (19) is normally pressurized, and the valve (15) opens when the solenoid valve (18) is turned ON, and closes when it is turned OFF.

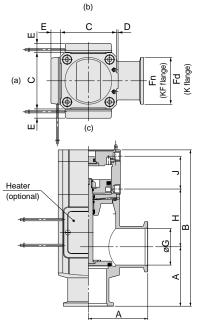
Moreover, in the case of a double solenoid, the valve moves to the side where the solenoid valve (18) is turned ON.

Operation is the same as that of the XLC. For sizes 50, 63 and 80, the valve is sealed with a standard load by means of an overrun mechanism.

Auto switch: The magnet (10) actuates the auto switch (4) indicating the position of the integrated valve (15) and piston (8). With 2 auto switches, the open and closed positions are detected, and with 1 auto switch, either the open or closed position is detected. Auto switches are applicable at ordinary temperatures only 5 to 60°C (41 to 140°F).

⑤ Heater:

Simple heating is performed using thermistors. The valve body can be heated to approximately 80, 100 or 120°C (176, 212, 248°F) depending on the heater option and the valve size. The type and number of thermistors to be used will vary depending upon size and setting temperature. In the case of high temperature specifications, the bonnet assembly (1) is a heat resistant structure. This is not available with solenoid valve.


(mm)

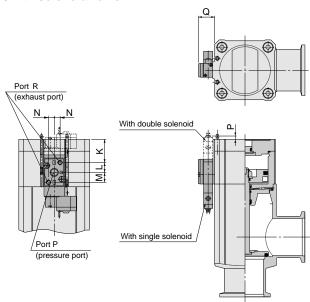
High Vacuum Angle Valve

Dimensions (mm)

1in=25.4mm

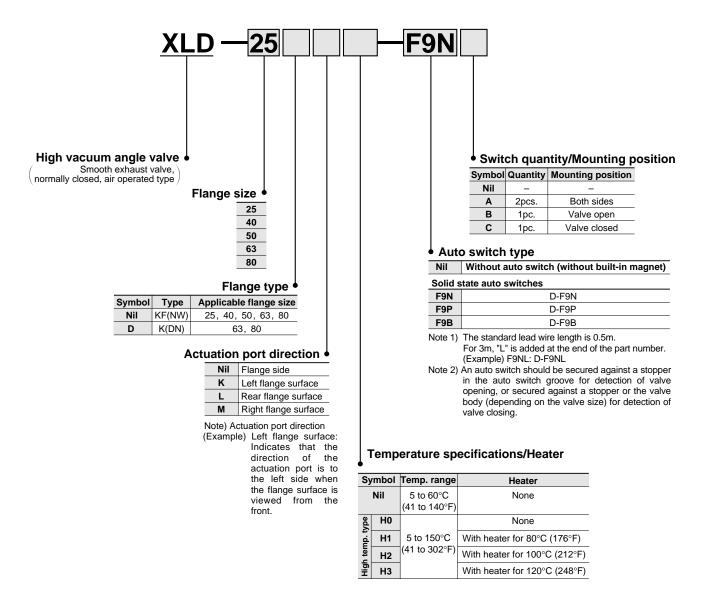
XLG/Air operated type

										(111111)
Model	Α	В	С	D	E Note 1)	Fn	Fd	G	Н	J
XLG-16	40	110	38	1	_	30	_	17	40	26
XLG-25	50	120	48	1	12	40	_	26	39	28
XLG-40	65	171	66	2	11	55	_	41	63	36
XLG-50	70	183	79	2	11	75	_	52	68	38
XLG-63	88	209	100	3	11	87	95	70	69	45
XLG-80	90	250	117	3	11	114	110	83	96	56


Note 1) Dimension E applies when heater option is included. (lead wire length: approx. 1m)

Note 2) (a), (b) and (c) in the above drawing indicate heater mounting positions.

Moreover, heater mounting positions will differ depending on the type of heater.


For further details, refer to mounting positions under Replacement heaters/Part Nos. on page 46.

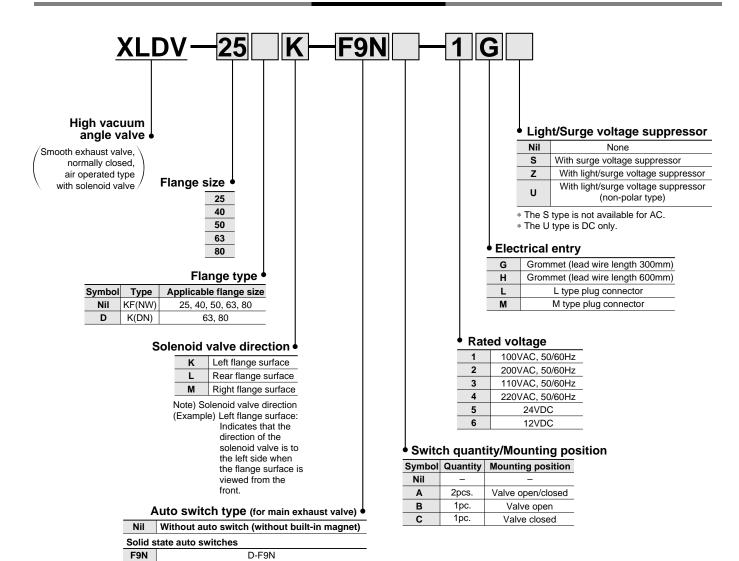
XLGV/With solenoid valve

						(mm)
Model	K	L	M	N	Р	Q
XLGV-16	14	9	6.5	3	17	16.5
XLGV-25	16	9	6.5	3	15	16.5
XLGV-40	29	9	6.5	3	2	17.5
XLGV-50	26	11	11	6.5	6	28
XLGV-63	32	11	11	6.5	-	29
XLGV-80	45	11	11	6.5	_	29

^{*} Other dimensions are the same as XLG.

XLD

High temperature type combination table


High temp. specifications	Symbol			Model		
riigh temp. specifications	Symbol	XLD-25	XLD-40	XLD-50	XLD-63	XLD-80
Without heater	H0	•	•	•	•	•
With heater for 80°C (176°F)	H1	•	•	•	•	•
With heater for 100°C (212°F)	H2	_	•	•	•	•
With heater for 120°C (248°F)	Н3	•	•	•	•	•

Note) Auto switches cannot be mounted in the case of high temperature types.

Smooth Exhaust Valve—Normally Closed/Bellows, O-ring Seal

Air Operated Type/with Solenoid Valve

How to Order

Note 1) The standard lead wire length is 0.5m. For 3m, "L" is added at the end of the part number. (Example) F9NL: D-F9NL

D-F9P

D-F9B

Note 2) An auto switch should be secured against a stopper in the auto switch groove for detection of valve opening, or secured against a stopper or the valve body (depending on the valve size) for detection of valve closing.

Note 1) Option specifications/Combinations

This model has indicator, auto switch and K(DN) flange options, but high temperature/heater options are not available.

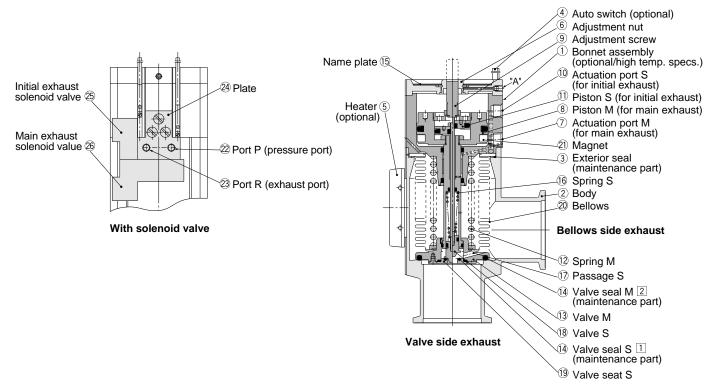
Note 2) Solenoid valves

Model	Initial exhaust valve	Example	
XLDV-25	SY	114	SY114-1GS
XLDV-40, 50, 63, 80	SY114	SYJ314	SYJ314-1GS

For further details on solenoid valves, refer to the SMC solenoid valve catalogs "SY100" (N219) and "SYJ 300, 500, 700" (N220)

F9P

F9B


Specifications

Model		XLD(V)-25	XLD(V)-40	XLD(V)-50	XLD(V)-63	XLD(V)-80	
Valve type		Normally clos	sed (spring retur	n & seal) [both i	main & initial ex	haust valves]	
Fluid		Non-cor	rosive gas for al	uminum alloy (A	(6063) and SUS	3304/316	
Operating temperature °C	XLD	5 to 60°C (41	to 140°F) [high	temperature typ	oe: 5 to 150°C	(41 to 302°F)]	
Operating temperature o	XLDV		5 to	50°C (41 to 12	2°F)		
Operating pressure Pa {To	orr}	A	tmospheric pres	ssure to 1 x 10 ⁻⁶	{760 to 7.5 x 10) ⁻⁹ }	
Main exhaust valve		14	45	80	160	200	
Conductance ds Note 1)	Initial exhaust valve	0.5 to 3	2 to 8	2.5 to 11	4 to 18	4 to 18	
Leakage Pa m³/s	Internal	1.3 x 10 ⁻¹⁰ {1	x 10 ⁻⁹ } at ordina	ary temperature	s, excluding ga	s permeation	
{Torr ds}	External	1.3 x 10 ⁻¹¹ {1	x 10 ⁻¹⁰ } at ordin	ary temperature	es, excluding ga	s permeation	
Operating time s Note 2) Main exhaust valve		0.10	0.21	0.24	0.26	0.28	
Operating time 5 ****	Initial exhaust valve	0.07	0.08	0.09	0.23	0.27	
Flange type		KF (NW) KF (NW), K (DN)					
Principle materials		Body: Aluminum alloy Bellows: Stainless steel Seal: FKM (fluoro rubber)					
Surface treatment		Exterior: Hard anodized Interior: Machined for clean environment					
Actuation pressure MPa		0.4 to 0	.7 (58 to 101.50	psi) [both main	& initial exhaus	t valves]	
Actuation port size	XLD	M5(10-32 nominal)		Rc(P	T) 1/8		
Actuation port size	XLDV		M5(10	-32 nominal) Po	rts P, R		
Actuating solenoid valve	Main exhaust valve	0.06 ≤	0.09 ≤	0.11 ≤	0.3 ≤	0.35 ≤	
recommended Cv factor (XLD)	Initial exhaust valve	0.01 ≤	0.01 ≤	0.02 ≤	0.02 ≤	0.03 ≤	
Service life (Million cycles			2				
Weight kg (lb)	XLD	0.5 (1.10)	1.2 (2.65)	1.8 (3.97)	3.4 (7.50)	5.6 (12.35)	
Troight Ng (ib)	XLDV	0.57 (1.26)	1.3 (2.87)	1.9 (4.19)	3.5 (7.72)	5.7 (12.57)	

Note 1) The main exhaust valve conductance is the value for the molecular flow of an elbow having the same dimensions. The initial exhaust valve conductance is the value for the viscous flow. Note 2) The time required for 90% valve movement when an actuation pressure of 0.5MPa (72psi) is applied. There is a difference of about 20% in this value at the upper and lower pressure limits. Note 3) For valve heater specifications, refer to "Common Option Specifications, [1]Heaters" on page 37.

High Vacuum Angle Valve

Construction/Operation

Operating principle

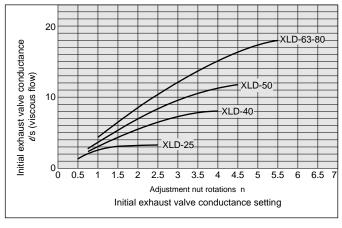
Initial exhaust valve opening adjustment

The initial exhaust rate should be adjusted before operation. With actuation port S (10) in an unpressurized state on model XLD, or with initial exhaust solenoid valve (25) in the OFF state on model XLDV, the initial exhaust rate is set to zero by gently turning the adjustment nut (6) to the right until it stops. After confirming the position of the angle adjustment scale on the name plate (15) and the angle adjustment mark on the adjustment nut (6), the initial exhaust rate is adjusted by turning the nut to the left. The pitch of the adjustment screw (9) is 1mm. The number of turns and initial exhaust conductance should be confirmed referring to the figure on the right.

A space is established between the end of the adjustment screw (9) and the shaft of valve S (18), which regulates the amount of movement of the piston S (11). The initial exhaust conductance is determined by the amount of opening between valve S (18) and the valve seal S [1]-(14). Further turning is prevented by locking after adjustment. When the initial exhaust rate will not be adjusted, or when it will be set at a fixed rate, it can be locked by tightening the Section "A" screw with a torque of approximately 5kgf-cm.

2 Operation of the initial exhaust valve

The left section in the drawing shows the initial exhaust valve in a closed condition.


When pressure is applied to the actuation port S (10) on model XLD, or the initial exhaust solenoid valve (25) is turned ON with port P (22) in a pressurized state on model XLDV, air follows the dotted line passing through the space by the shaft and fills the area below the piston S (11). Piston S (11) is stopped when it strikes the adjustment screw (9). Through the movement of piston S (11), the valve S (18) is removed from the valve S seal assembly [1]-(14), and initial exhaust takes place through the passage S(17).

3 Operation of the main exhaust

When pressure is applied the the actuation port M (7) on model XLD, or the main exhaust solenoid valve (26) is turned ON with port P in a pressurized state on model XLDV, the piston M (8) moves upward opening valve M (13). Port S (10) remains pressurized and valve S (18) remains open.

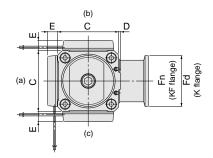
4 Closing of both valves

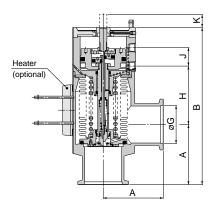
By removing pressure from actuation port S (10) and actuation port M (7) on model XLD, or turning OFF initial exhaust solenoid valve (25) and main exhaust solenoid valve (26) on model XLDV, the force of spring S (16) and spring M (12) cause valve S (18) and valve M (13) to contact their respective valve seats and seals, thereby sealing them.

Options

4 Auto switch: (for main exhaust valve)

The magnet (21) actuates the auto switch (4) indicating the position of the integrated valve M (13) and the piston M (8). With two auto switches, the open and closed positions are detected, and with one auto switch, either the open or closed position is detected. Auto switches are applicable at ordinary temperatures only 5 to 60° C (41 to 140° F).


⑤ Heater:


Simple heating is performed using thermistors. The valve body can be heated to approximately 80, 100 or 120°C (176, 212, or 248°F), depending on the heater option and valve size. The type and number of thermistors to be used will vary depending upon size and setting temperature. In the case of high temperature specifications, the bonnet assembly (1) is a heat resistant structure. This is not available with solenoid valve.

Dimensions (mm)

1in=25.4mm

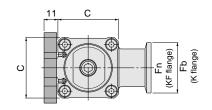
XLD/Air operated type

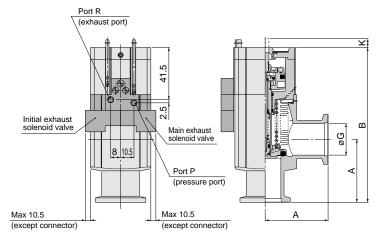
											(mm)
Model	Α	В	С	D	Е	Fn	Fd	G	Н	J	K
XLD-25	50	123	48	1	12	40	_	26	41	16	6.5
XLD-40	65	170	66	2	11	55	_	41	63	20	14
XLD-50	70	183	79	2	11	75	_	52	68	20	16.5
XLD-63	88	217	100	3	11	87	95	70	72	20	18.5
XLD-80	90	256	117	3	11	114	110	83	98	20	26.5

Note 1) Dimension E applies when heater option is included. (lead wire length: approx. 1m)

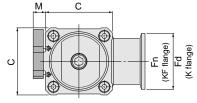
Note 2) (a), (b) and (c) in the above drawing indicate heater mounting positions.

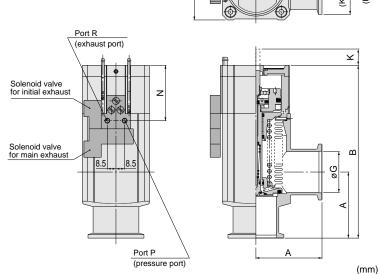
Moreover, heater mounting positions will differ depending on the type of heater.

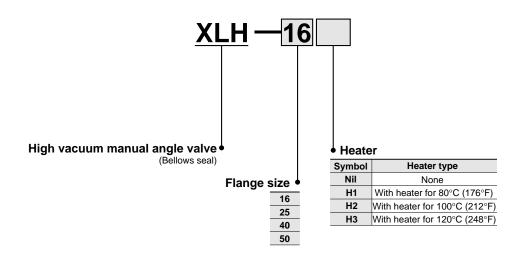

For further details, refer to mounting positions under Replacement heaters/Part Nos. on page 46.


High Vacuum Angle Valve

Dimensions (mm)


1in=25.4mm


XLDV-25/With solenoid valve



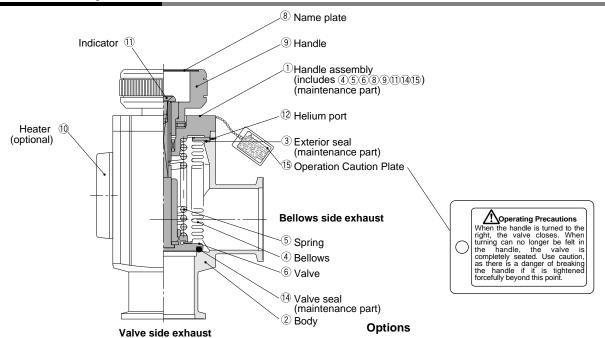
Model	Α	В	С	Fn	Fd	G	M	N	K
XLDV-25	50	123	48	40	-	26	-	-	6.5
XLDV-40	65	170	66	55	-	41	12	54.5	14
XLDV-50	70	183	79	75	-	52	12	58.5	16.5
XLDV-63	88	217	100	87	95	70	13	73.2	18.5
XLDV-80	90	256	117	114	110	83	13	83.6	25.5

Heater combination table

Setting temperature	Symbol		Model						
Setting temperature	Symbol	XLH-16	XLH-25	XLH-40	XLH-50				
80°C (176°F)	H1	_	•	•	•				
100°C (212°F)	H2	_	_	•	•				
120°C (248°F)	Н3	_	•	•	•				

Note) Heater cannot be retrofitted.

Specifications


Model			XLH-16	XLH-25	XLH-40	XLH-50			
Fluid			-	sive gas for aluminum					
Operating	temperature	°C		5 to 150°C (
Operating	pressure Pa	{Torr}	A	mospheric pressure t)-9}			
Conducta	nce U s Note 1)		5	14	45	80			
Leakage	Pa m³/s	Internal	1.3 x 10 ⁻¹⁰ {1 x	10 ⁻⁹ } at ordinary temp	eratures, excluding g	as transmission			
	{Torr ds}	External	1.3 x 10 ⁻¹¹ {1 x 1	10 ⁻¹⁰ } at ordinary temp	peratures, excluding g	as transmission			
Flange ty	pe		KF (NW)						
Principle	materials		Body: Aluminum alloy Bellows: Stainless steel Seal: FKM (fluoro rubber)						
Surface to	reatment		Exterior: Ha	rd anodized Interior	r: Machined for clean	environment			
Actuation	torque N·m {l	kgf⋅cm}	0.1≤{1≤}	0.15≤{1.5≤}	0.35≤{3.5≤}	0.5≤{5≤}			
Handle re	volutions		5 7 10 13						
Service li	fe (Million cyc	les)		0	.1				
Weight k	g (lb)		0.23 (0.51)	0.41 (0.90)	1.05 (2.31)	1.62 (3.57)			

Note 1) The conductance is the same as that of an elbow of the same dimensions.

Note 2) For valve heater specifications, refer to "Common Option Specifications, [1] Heaters" on page 37.

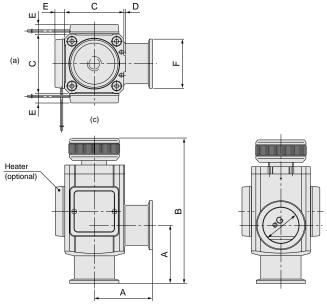
Manual Valve—Bellows Seal

Construction/Operation

Operating principle

By turning the handle (9) to the left, the valve (6) opens. The handle (9) does not move up and down, but the indicator (11) shows the open or closed position of the valve. As the handle (9) is turned to the right, the valve (6) closes, and when the turning force of the handle (9) suddenly ceases to be felt, the valve (6) is sealed. The sealing force for the valve (6) comes from the spring (5), and is constant.

10 Heater: Simple heating is performed using thermistors. The valve body can be heated to approximately 80, 100 or 120°C (176, 212 or 248°F), depending on the heater option and the valve

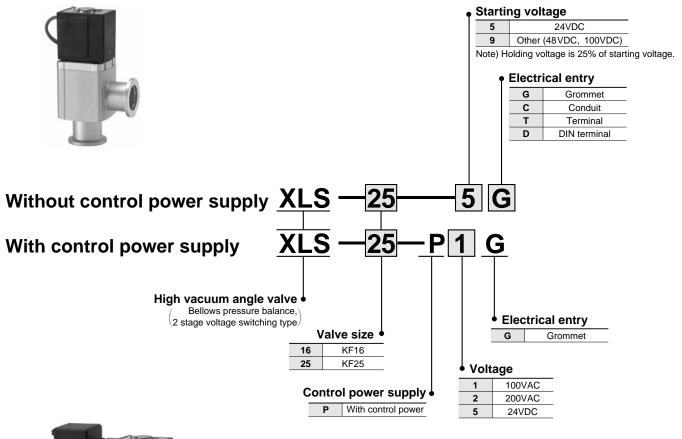

> The type and number of thermistors to be used will vary depending upon size and setting

temperature.

Indicator: When the valve is open, an orange marker appears in the center of the name plate (8).

Dimensions (mm)

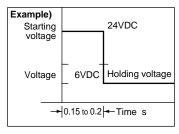
1in=25.4mm



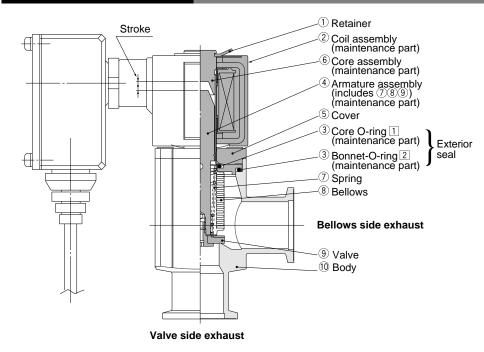
							(mm)
Model	Α	В	С	D	E Note 1)	F	G
XLH-16	40	100.5	38	1	-	30	17
XLH-25	50	114	48	1	12	40	26
XLH-40	65	162.5	66	2	11	55	41
XLH-50	70	179.5	79	2	11	75	52

Note 1) Dimension E applies when heater option is included. (lead wire length: approx. 1m) Note 2) (a), (b) and (c) in the above drawing indicate heater mounting positions. Moreover, heater mounting positions will differ depending on the type of heater.

For further details, refer to mounting positions under Replacement heaters/Part Nos. on page 46.



△ Warning


(1) In case there is no control power supply (XLS-25-\[]: 24/48/100VDC), starting voltage should be applied for only 0.15 to 0.2s, in accordance with the prescribed method (indicated on the back of the coil). Continuously applying starting voltage can cause overheating of the coil and fire. Holding voltage is 25% of the starting voltage (the application method is shown on the back of the solenoid coil).

Specifications

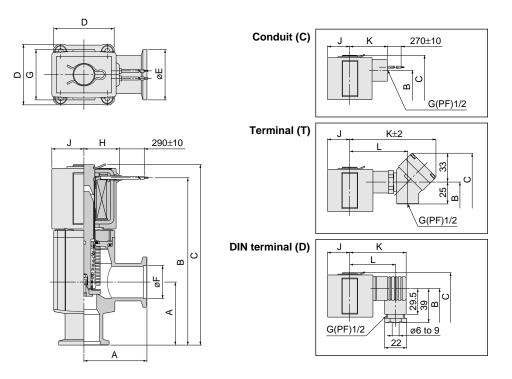
Model		XLS-16	XLS-25	XLS-16-P□G	XLS-25-P□G				
Valve type			Normally cl	osed (N.C.)					
Fluid		Non-corrosive gas	Non-corrosive gas for aluminum alloy (A6063) and stainless steel (SUS405 equiv.)						
Operating temperature °	С	5 to 40°C (41 to 104°F)							
Operating pressure Pa	{Torr}		0.2M to 1 x 10 ⁻⁶ {	1.5k to 7.5 x 10 ⁻⁹ }					
Conductance #s		5	8 5		8				
Leakage Pa m³/s	Internal	1.3 x 10 ⁻⁸ {1 x	10 ⁻⁷ } at ordinary temp	peratures, excluding ga	as permeation				
{Torr ds}	External	1.3 x 10 ⁻¹¹ {1 x	10 ⁻¹⁰ } at ordinary tem	peratures, excluding g	as permeation				
Flange type/size		KF16	KF25	KF16	KF25				
Principle materials		Body : Aluminum	alloy Bellows: Stair	nless steel Seal: FK	M (fluoro rubber)				
Surface treatment		Exterior: Ha	rd anodized Interio	or Machined for clean	environment				
Control power supply		N	О	Y	es				
Operating power supply	voltage	24/6, 48/12	24/6, 48/12, 100/24VDC 24VDC 100/200VAC						
Allowable voltage fluctu	ation %	±10							
Power consumption W	Initial	35	45	35	45				
rower consumption w	Holding	6.5	7.5	6.5	7.5				
Current consumption A	Initial	1.5	2.0	1.5	2.0				
Current consumption A	Holding	0.4	0.5	0.4	0.5				
Electrical entry		G, C, D	, T type	G typ	e only				
Coil insulation			Clas	ss B					
Maximum operating freq	uency		10 c	.p.m					
Service life (Million cycle	es)		0	.5					
Weight kg (lb)		0.4 (0.88)	0.7 (1.54)	0.7 (1.54)	1.0 (2.20)				

Construction/Operation

Operating principle

By energizing the coil assembly (2) for 0.15 to 0.2s with the starting voltage, the armature assembly (4) overcomes the reactive force of the spring (7) and is adsorbed to the core assembly (6), opening the valve (9). After that, it is held with 25% of the starting voltage (when there is no power supply). (When there is a power supply, the activating voltage only is applied to the coil assembly (2).) When energizing of the coil assembly (2) is canceled, the armature assembly (4) is separated from the core assembly (6) by the reactive force of the spring (7), closing the valve (9).

Note 1) The fixed seals between the interior of the body (10) and the atmosphere are the exterior seals (3), and the drive section is sealed by the bellows (8).

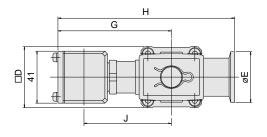

Note 2) Since the seal diameter of the valve (9) and the effective pressure receiving diameter of the bellows (8) are the same, pressure is in balance and the bellows side can also be used for exhaust.

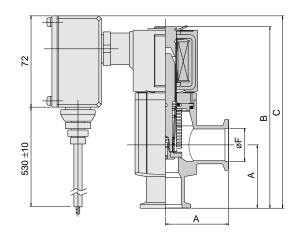
Series XLS High Vacuum Angle Valve

Dimensions (mm)

1in=25.4mm

XLS/Without control power supply Grommet (G)


											(mm)	
Model	Α	В	С	D	E	F	G	Н	J	K	L	
XLS-16-□G		104					35		23	_	_	
XLS-16-□C	40	96	113	38	30	17.1		25.5		41	_	
XLS-16-□D	40		96		30	30	17.1	33	23.3	23	60	48
XLS-16-□T			129							95	62	
XLS-25-□G		128.5								-	_	
XLS-25-□C	50	121.5 120.5	50 48	138.5	10	40	26.2	40	28	25.5	43	_
XLS-25-□D	30			40	20.2	40	20	25.5	63	51		
XLS-25-⊟T		121.5	154.5							97	66	


High Vacuum Angle Valve

Dimensions (mm)

1in=25.4mm

XLS/With control power supply Grommet (G)

									(mm)
Model	Α	В	С	D	E	F	G	Н	J
XLS-16-P□G	40	113	121	38	30	17.1	87	110	66.5
XLS-25-P□G	50	138.5	147	48	40	26.2	89.5	115	69

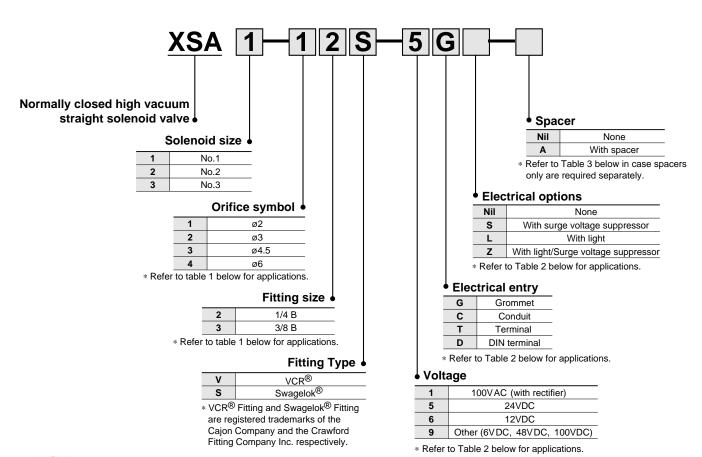


Table 1: Model, Fitting size, Orifice

Solenoid v	alve model (f	itting size)	Orifice symbol (diameter)						
- Coleriola va	lenoid valve model (fitting size)		1	2	3	4			
XSA1	XSA2	XSA3	(ø2)	(ø3)	(ø4.5)	(ø6)			
2(1/4)	_	_	•	•	_	_			
_	2(1/4)	_	_	•	•	_			
_	_	2(1/4)	_	_	•	_			
_	_	3(3/8)	_	_	_	•			

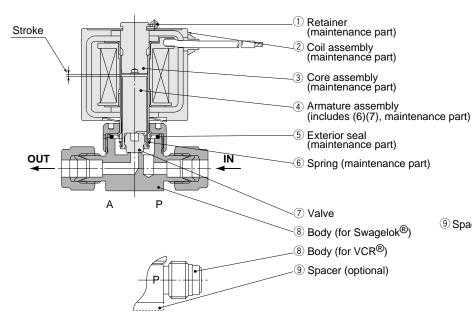
Table 3: Spacer part nos.

Model	Part No.			
XSA1	XSA122-8-4			
XSA2	VS A 222 8 4			
XSA3	XSA232-8-4			

Table 2: Voltage, Electrical entry, Electrical options

Electric	al entry	G	G	С	D, T		
Electrica	Electrical options –		S	_	_	S	L, Z
AC	1(100V)	•	_	_	_	_	_
DO	5(24V)	•	•	•	•	•	•
DC	6(12V)	•	•	•	•	•	_

Specifications


Model			XSA1-12	XSA1-22	XSA2-22	XSA2-32	XSA3-32	XSA3-43		
Action			Normally closed direct acting 2 port solenoid valve							
Fluid			Non corrosive gas for stainless steel (SUS405 equivalent)							
Orifice diameter m	Orifice diameter mmø				3	4	.5	6		
Cv factor			0.17	0.	33	0	.6	1.05		
Actuation pressure	differe	nce MPa ^{Note 1)}	0.8	0.3	1.0	0.3	0.8	0.3		
Reverse pressure p	otentia	I MPa Note 2)	0.5	0.25	0.4	0.2	0.2	0.15		
Port A pressure Pa	1				1 x 1	0-6				
		Internal	1.3 x 10 ⁻⁹ {1 x 10 ⁻⁸ } at ordinary temperatures, excluding gas permeation							
Leakage Pa m³/s		External	1.3 x 10 ⁻¹¹ {1 x 10 ⁻¹⁰ } at ordinary temperatures, excluding gas permeation							
{Torr ds}	Fitting	VCR ®	1.3 x 10 ⁻¹¹ {1 x 10 ⁻¹⁰ }							
	ıııııg	Swagelok [®]	1.3 x 10 ⁻¹⁰ {1 x 10 ⁻⁹ }							
Piping connection	system		VCR®/SWJ (Swagelok)®							
Connection size			1/4B 3/8B							
Operating temperat	ture °C				5 to 40°C (4°	1 to 104°F)				
Rated voltage	Rated voltage			100VAC (with full wave rectifier) 6/12/24/48/100VDC						
Power consumption W			5		3	3	11			
Allowable voltage fluctuation %			±10							
Weight kg (lb)			0.3 (0.3 (0.66)						
Service life (Million	cycles		2							

Note 1) The actuation pressure difference indicates the difference between Port P (high pressure side) and Port A (low pressure side). Example) In the case of 0.3MPa, Port A is a vacuum (1Torr or less), while Port P can be pressurized to 0.2MPa (29psi).

Note 2) Reverse pressure potential indicates the pressure which can be applied from Port A when Port P is at atmospheric pressure.

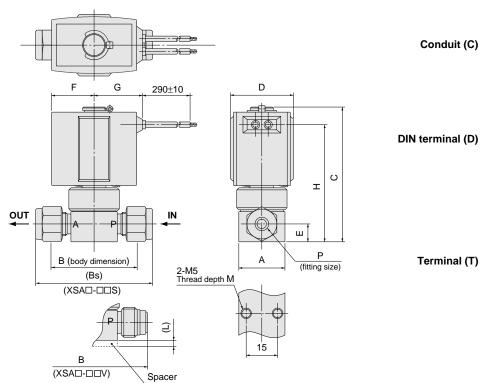
Note 3) Indicates case of grommet type electrical entry.

Construction/Operation

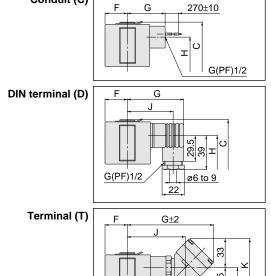
Operating principle

By energizing the coil assembly (2), the armature assembly (4) overcomes the composite force, consisting of the force acting on the valve (7) due to differential pressure and the reactive force of the spring (6), and is adsorbed to the core assembly (3), opening the valve (7). When energizing of the coil assembly (2) is canceled, the armature assembly (4) is separated from the core assembly (3) by the reactive force of the spring (6), closing the valve (7).

Options


Spacer: A spacer used to raise the body when fastening it onto a flat area.

Series XSA High Vacuum Angle Valve


Dimensions (mm)

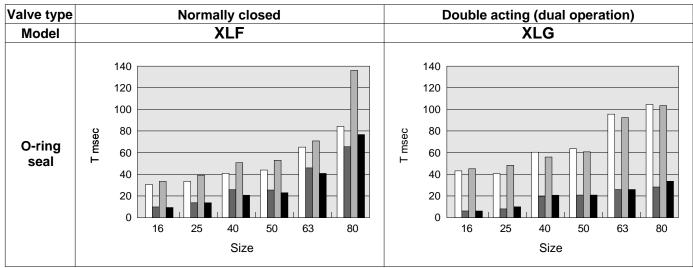
1in=25.4mm

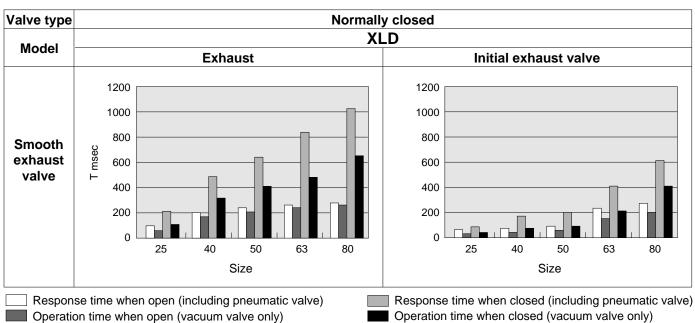
Electrical entry Grommet (G)

Electrical entry

(mm)

G(PF)1/2

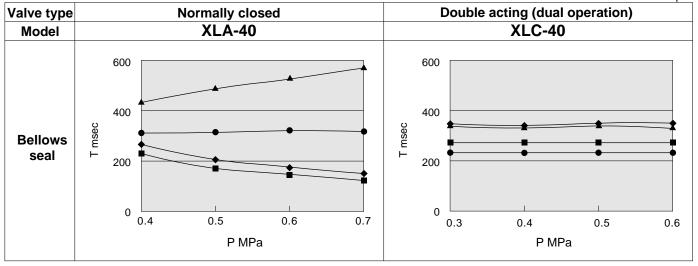

Model		В	Bs	(C D		_ _		Grommet		Conduit		Terminal			
Model	A	() are VCR [®] type	Swagelok [®] type	J	0	_	F	G	Н	G	Н	G	Н	J	K	
XSA1-□2S(V)	22	41(51)	56	64	30	8.5	20	23	56	39	48	92	48	59	81	
XSA2-□2S(V)	25	46.5(57)	61	75.5	35	11.5	23	25.5	66	41	58.5	95	58.5	62	91.5	
XSA3-32S(V)	25	46.5(57)	61	82	40	11.5	25.5	28	72	43	64	97	64	66	97	
XSA3-43S(V)	25	50(66)	65	82	40	11.5	25.5	28	72	43	64	97	64	66	97	

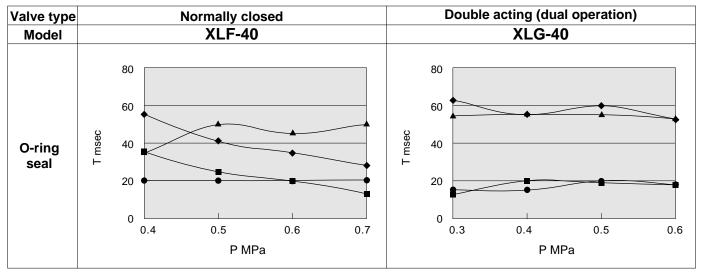

Model	D	IN termir	nal		м	Р
Model	G	Н	J	L	IVI	(Unit: inch)
XSA1-□2S(V)	59	48	47	3	8	1/4
XSA2-□2S(V)	60	58.5	48	5	10	1/4
XSA3-32S(V)	63	64	51	5	10	1/4
XSA3-43S(V)	63	64	51	5	10	3/8

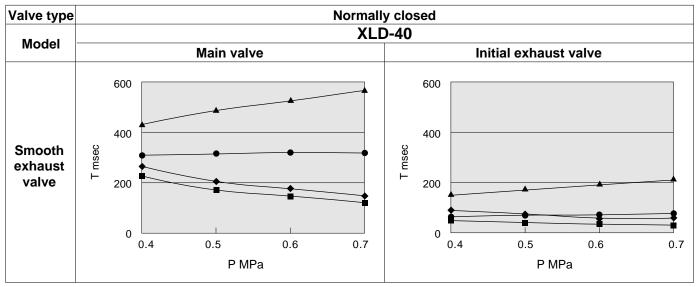
Series XL High Vacuum Angle Valve

1 With pilot pressure at 0.5MPa (72psi)

Valve type		Normally closed	Double acting (dual operation)
Model		XLA	XLC
Bellows seal	1200 1000 800 800 600 400 200	16 25 40 50 63 80 Size	1200 1000 800 400 200 0 16 25 40 50 63 80 Size






Series XL High Vacuum Angle Valve

2 As a function of pilot pressure

1MPa = 145 psi

- Response time when open (including pnematic valve)
- Operation time when open (vacuum valve only)
- Response time when closed (including pnematic valve)
- Operation time when closed (vacuum valve only)

1 Heaters

Valve heaters are common for models XLA, XLC, XLD, XLF, XLG and XLH. Power consumption specifications are shown in the table below.

Item	XL□ - 25	XL□ - 40	XL□ - 50	XL□ - 63	XL□-80		
Rated heater voltage	90 to 125VAC						
Heater power W (nominal value)	H1	80°C (176°F)	200/10	200/20	400/40	400/60	600/100
In-rush/Normal	H2	100°C (212°F)	_	200/40	200/60	400/100	600/150
(Option symbol)	Н3	120°C (248°F)	200/30	400/70	400/80	600/130	800/180

Note) In-rush current will flow to the heater for approximately 30 seconds and will then subside. Refer to Maintenance Parts on page 46 for further details regarding quantity and type.

2 Solid State Auto Switches

Brown [Red]

Black [White]

(–) Blue [Black]

Brown [Red]

Black [White]

Blue [Black]

Brown [Red]

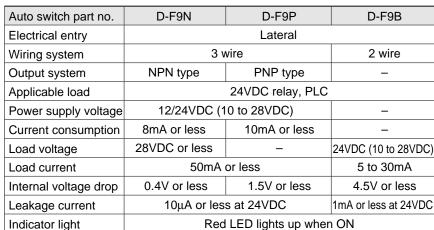
Blue [Black]

Output

(+)

Output

Auto Switch Internal Circuits

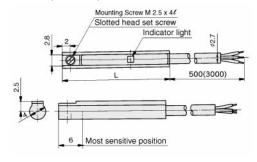

D-F9N

D-F9P

D-F9B

Specifications of applicable auto switches are shown below. An auto switch should be secured against a stopper in the auto switch groove for detection of valve opening, or at a position where it lightly touches a stopper or the valve body (depending on the valve size) for detection of valve closing.

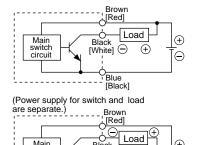
Auto Switch Specifications



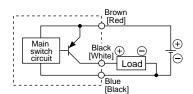
- Operating time 1ms or less
- Lead wires ... Oil resistant heavy duty vinyl cord, ø2.7, 0.5m
 - D-F9N, D-F9P 0.15mm² x 3 wires (brown, black, blue [red, white, black])
 - D-F9B 0.18mm² x 2 wires (brown, blue [red, black])
- Impact resistance 1000m/s²{102G}
- Insulation resistance $50M\Omega$ or more with 500VDC between lead wire and case
- Withstand voltage........... 1000VAC for 1 min. (between lead wire and case)
- Ambient temperature..... −10 to 60°C (14 to 140°F)
- Indicator light Lights up when ON
- EnclosureIEC529 Standard IP67 watertight (JISCO920)
- * For a lead wire length of 3m, "L" is added at the end of the part number. Example) D-F9NL

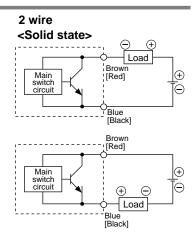
Auto Switch Dimensions (mm)

1in=25.4mm

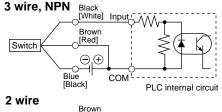

D-F9N, D-F9P, D-F9B

L dimension (mm)
22
26.5
26.5

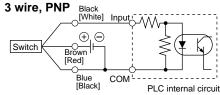

Basic Wiring

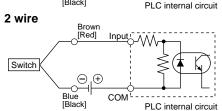

Solid state 3 wire, NPN

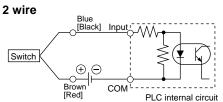
[White]


Solid state 3 wire, PNP

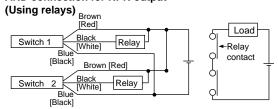
Examples of Connection to PLC or Programmable Logic Controller

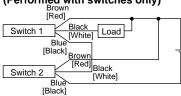

Specification for sink input


 \oplus

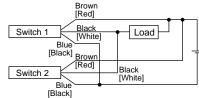

 \ominus

Specification for source input

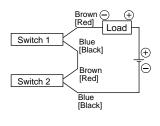

Connect according the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.



Connection Examples for AND (Series) and OR (Parallel)


3 wire **AND connection for NPN output**

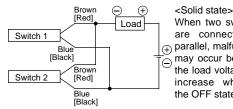
AND connection for NPN output (Performed with switches only)



OR connection for NPN output

The indicator lights will light up when both switches are turned ON.

2 wire with 2 switch AND connection


When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state.

The indicator lights will light up if both of the switches are in the ON state.

Load voltage at ON =
$$\frac{\text{Power supply}}{\text{voltage}}$$
 - $\frac{\text{Residual}}{\text{voltage}}$ x 2 pcs.
= 24V - 4V x 2 pcs.
= 16 V

Example: Power supply is 24VDC Voltage decline in switch is 4V

2 wire with 2 switch OR connection

When two switches are connected in (+) parallel, malfunction may occur because the load voltage will increase when in the OFF state.

Load voltage at OFF = leakage x 2 pcs. x impedance = 1mA x 2 pcs. x $3k\Omega$ =6V

Example: Load impedance is $3\,\text{k}\Omega$ Leakage current from switch is 1mA Because there is no current leakage, the load voltage will not increase when turned OFF, but due to the number of switches in the ON state, the indicator lights will sometimes get dark or not light up, because of dispersion and reduction of the current flowing to the switches.

<Reed switch>

1

Seal Materials Available

FKM (fluoro rubber)

With low outgassing, low permanent-set and low gas permeation rate, this is the most popular seal material for high vacuum. SMC's seal material has undergone a high vacuum degassing process, and at normal temperatures can exhibit performance equivalent to metal seals. For usage in the tens of thousands of hours, a temperature ceiling of 180°C is recommended. When baking under high vacuum, mass numbers 18, 28 and 44 exceed the hydrogen peak, however, after returning to room temperature, these are undetectable, comparable to vacuums with metal sealing. (from SMC data)

Kalrez®

This is an elastomer with the most outstanding resistance to heat and chemicals, but its permanent-set is large, and special caution is required when used in other than static applications. Keeping other conditions the same as in the case of FKM, the recommended temperature ceiling is 250°C. Variations are available with improved plas-

ma (O_2, CF_4) and particulate resistance. Therefore, it is advisable to select types based upon the application.

* Kalrez® is a registered trade mark of DuPont, Inc.

Chemraz®

This material has excellent chemical and plasma resistance and has slightly higher heat resistance than FKM. The recommended operating temperature ceiling is 200°C. Several variations of Chemraz® are available and it is advisable to make a selection based upon the particular plasma being used and other conditions, etc.

* Chemraz® is a registered trade mark of Greene, Tweed & Co.

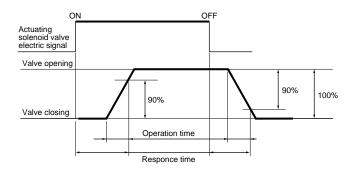
Silicone

This material is relatively inexpensive, has good plasma resistance and can be used at high temperatures, but its gas permeation rate is large. It is most useful in differentially pumped applications where permeation is not an issue.

2 Shaft Sealing Method

Bellows

SMC valves employ formed-bellows that produce few particulates yet have very long life. Welded-bellows are not used despite their longer life because they generate many more particulates. The cleaning and durability of SMC bellows have been improved through consistent control of surface treatment and handling.

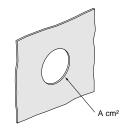

3 Response time/Operation time

Valve opening

The time from the application of voltage to the actuation solenoid valve until 90% of the valve ($XL\Box$) stroke has been completed is the valve opening response time. Valve opening operation time indicates the time from the start of the stroke until 90% of movement has been completed. Both of these become faster as the operating pressure is increased.

Valve closing

The time from the cut off of power to the actuation solenoid valve until 90% of the valve (XL \square) return stroke has been completed is the valve closing response time. Valve closing operation time indicates the time from valve opening until 90% of return movement has been completed. Both of these become slower as the operating pressure is increased.

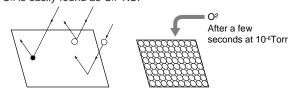

O-ring, etc.

Due to entrainment of gases and generation of particulates, vacuum performance is somewhat inferior to the bellows type. However, high speed operation is possible and durability is comparatively high. The SMC sealing system has an especially long life because, it employs seals that are specially designed to retain the low vapor pressure grease while keeping particulates out.

Molecular flow conductance

Orifice conductance

In the case of a ØA (cm²) hole in an ultra-thin plate, the conductance "C" results from "V" the average velocity of the gas, "R" the gas constant, "M" the molecular weight and "T" the absolute temperature. From the formula C=VA/4=(RT/2 π M)^{0.5}A, the conductance for 1cm² is C=11.6A ℓ /sec, at an air temperature of 20°C.



Cylinder conductance

With length "L" (cm) and diameter "D" (cm) where L>>D, from the formula $C=(2\pi RT/M)^{0.5}D^3/6L$, the conductance $C=12.1D^3/L$ ℓ /sec, at an air temperature of 20°C.

Short pipe conductance

From the Clausing's factor "K" and the hole conductance "C" in the drawing below (Clausing's factor drawing), the short pipe conductance C_K is easily found as C_K =KC.

Conductances combined

When each of the separate conductances are given as C_1 , C_2 and C_1 , the composite conductance ΣC is expressed as: $\Sigma C = 1/(1/C_1 + 1/C_2 + ... 1/C_1)$ when in series, and $\Sigma C = C_1 + C_2 + ... C_1$, when

 $\Sigma C = 1/(1/C_1 + 1/C_2 + ... 1/C_n)$ when in series, and $\Sigma C = C_1 + C_2 + ... C_n$, when in parallel.

5 He leakage

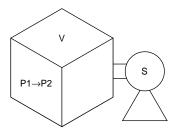
Surface leakage

Leakage that occurs between the deformable seal material and the sealing surface at room temperature (20 to 30°C). This is read within a few minutes after the start of the test.

Gas permeation

This is leakage caused by diffusion through the deformable seal material. As the temperature increases, the diffusion rate increases, and in many cases, becomes greater than surface leakage. The diffusion rate is proportional to the cross-sectional area (cm²) of the seal, and inversely proportional to the seal width (the distance between the vacuum side and the atmosphere). In the case of metal gaskets, only hydrogen diffusion needs to be considered.

6 Outgassing


This is a phenomenon in which gases that are absorbed or adsorbed to chamber surfaces and/or its pores are released into the vacuum. It is lowest on smooth surfaces with a fine oxidize layer. The process of forming the oxidize layer has a particularly large effect. Reductions in outgassing can be achieved by methods such as EL processing to control the oxidation process in the case of aluminum alloys, and anhydrous high temperature oxidation in the case of stainless steel. Processes, such as anodization, can entrap gases in pores causing high outgassing rates. However, after high vacuum baking, the difference in the ultimate pressure with or without anodization is extremely minute.

Ultimate pressure

The ultimate pressure P(Torr) is P=Q/S, where the sum of the mass flow rates for outgassing (Qg) and leakage (Ql) is Q(Torr l/sec) and the exhaust pumping speed is S (!/sec). In cases of very low pressure, the exhaust characteristics of the pump itself may be the limiting factor. In particular, deterioration of pumping speed due to contamination of the pump by atmospheric moisture can be a major factor.

Exhaust time (low/medium vacuum)

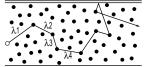
The time (\trianglet) required to exhaust a chamber at low vacuum with volume V (l), from pressure P1 to P2, using a pump with pumping speed S (ℓ /sec) is $\triangle t=2.3(V/S)\log(P1/P2)$. In high vacuums, this is subject to the ultimate pressure limit imposed by outgassing and leakage as characterized above.

9 Baking

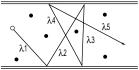
Gases such as oxygen and nitrogen, which have a small adsorption activation energy (E) and a short adsorption residence time (τ), are evacuated guickly. However, in the case of water, which has a high activation energy, evacuation does not progress quickly unless the temperature is raised to shorten residence time. This time may be characterized as $\tau=\tau o \exp(E/RT)$ where R is the ideal gas constant and τo=(approx.)10-13sec.

Residence time of water at 20°C is 5.5 x 10⁻⁶ sec, whereas at 150°C it is 2.8 x 10⁻⁸ sec, or 200 times shorter.

As an example, it took 800 minutes to evacuate moist air from a ø150mm x 500mm SMC test chamber to 10⁻⁹Torr. The same process took only 4 minutes with dry (20ppb) nitrogen.


10 Body materials

Stainless steel has been the traditional material for vacuum systems but the use of aluminum alloys is becoming more common. Stainless steel has good corrosion resistance and strength, but poor thermal conductivity causes large temperature variations, and heavy metal contamination is a problem. Aluminum offers superior temperature uniformity (with 12 times higher thermal conductivity) and in many cases better gas corrosion resistance. Also, it has lower sputter yields from stray energetic particles and contributes no heavy metal contamination. Special anodization and electroless nickel plating are made available by SMC for highly corrosive gases.


Flow classification

The relation of the average free path of gas molecules λ and the pipe diameter D expressed as λ/D is the Knudsen number, and the relation of the pressure p(Torr) converted to air at 20°C is expressed as pD. These are the flow classifications shown in the table below.

ltem Classification	λ/D (Knudsen number)	pD(Torr·cm)
Viscous flow	<0.01	>0.5
Intermediate flow	0.01 to 0.3	0.5 to 0.015
Molecular flow	>0.3	<0.015

When the pressure is high there are many collisions among the molecules.

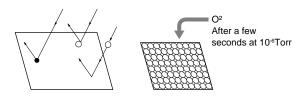
When the pressure is low. collisions are mainly against the walls

Partial pressure

This indicates the residual gas constituents in a vacuum (usually measured with a quadrupole mass spectrometer). At 10⁻⁷ to 10⁻⁹Torr, 90% or more is moisture, at 10⁻¹²Torr or below, 98% or more is hydrogen. The other main residual gases have mass numbers of 28 and 35. (from SMC data)

Technical Data Series XL

13 Total pressure


This is the sum of all partial pressures and is equal to P=nkT, where the pressure is P, the number of gas molecules is P, Boltzmann's constant is P, and the absolute temperature is P.

14 Average free path

This is the average flight distance (λ cm) that gas molecules travel between collisions with one another. It is inversely proportional to the molecular density (pressure) and may be characterized as λ =0.7/ π n δ ² or λ =2.33 x 10⁻²⁰T/P δ ². Here δ is the molecular diameter (cm), n is the molecular density (units/cm³), T is the absolute temperature (K), and P is the pressure (Torr). In the case of air, for example, this becomes approximately 5cm at room temperature with 10⁻³ Torr. (Refer to the drawing in section [11] Flow classification.)

15 Impingement frequency

The impingement frequency of gas molecules on a unit surface area is Z=3.53 x 10^{22} P/(MT)^{1/2} collisions/sec cm² where M is the quantity of molecules, T is the absolute temperature (K), and P is the pressure. In the case of oxygen at room temperature and 10^{-6} Torr, one atomic layer impinges in a few seconds.

Series XL, XSA Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe these precautions.

↑ Caution : Operator error could result in injury or equipment damage.

Marning: Operator error could result in serious injury or loss of life.

Danger: In extreme conditions, there is a possible result of serious injury or loss of life.

Specific product Precautions 1

Be sure to confirm the specifications and read the following precautions before handling these valves.

Contact SMC regarding cases which are outside of specifications.

Air Operated Angle Valves/Series XLA(V), XLC(V), XLD(V), XLF(V), XLG(V)

Precautions on Design

⚠ Warning

All models

- The body material is A6063, the bellows and other parts are SUS316L and SUS304, and the seal material is fluoro rubber (Viton®). Use fluids which are compatible with these materials.
- Select materials for the actuation pressure piping, and heat resistance for fittings that are suitable for the applicable operating temperatures.
- Models with auto switch/XLA(V), XLC(V), XLD(V), XLF(V), XLG(V)
- The switch section should be kept at a temperature no greater than 60°C.
- Models with heater/XLA, XLC, XLD, XLF, XLG
- 1. When using a model with a heater (thermistor), a device should be installed to prevent over heating.
- Models with solenoid valve/XLAV, XLCV, XLDV, XLFV, XLGV
- For models with a solenoid valve, the temperature of the solenoid valve section should be no greater than 50°C.

Selection

⚠ Caution

All models

- 1. When controlling valve responsiveness, take note of the size and length of piping, as well as the Cv factor (flow rate characteristics) of the actuating solenoid valve. Refer to "Specifications/Recommended Cv factor for actuating solenoid valve" regarding the actuating solenoid valve Cv factor.
- Actuating pressure should be kept within the specified range. 0.4 to 0.5MPa (4 to 5kgf/cm²) is recommended.
- 3. Use within the limits of the operating pressure range. Pressure up to 0.2MPa (2kgf/cm²) can be applied momentarily from the bellows side [XLA(V), XLC(V), XLD(V)], or from the shaft side [XLF(V), XLG(V)]. However, the valve side should not be raised above atmospheric pressure, as internal leakage will increase.
- High temperature types/XLA, XLC, XLD, XLF, XLG
- In the case of gases which cause a large amount of deposits, heat the valve body or use a model with heater to prevent deposits in the valve

Specific Product Precautions 2

Series XL

Be sure to read before handling.

Mounting

⚠ Caution

All models

- In high humidity environments, keep valves packaged until the time of installation.
- In cases with switches or solenoid valves, secure the lead wires so that they have sufficient slack, without any unreasonable force applied to them.
- Perform piping so that excessive force is not applied to the flange sections. In case there is vibration of heavy objects or attachments, etc., secure them so that torque is not applied directly to the flanges.
- High temperature types (Models/XLA, XLC, XLD, XLF, XLG; Temperature specifications/H0, H1, H2, H3)
- In models with heater (thermistor), take care not to damage the insulation components of the lead wires and connector section.
- The setting temperature for models with heater should be established without a draft or heat insulation. It will change depending on conditions such as heat retaining measures and the heating of other piping. Fine adjustment is not possible.
- When installing heater accessories or mounting a heater, check insulation resistance at the actual operating temperature. The installation of a short circuit breaker, etc. is recommended.
- When a valve is to be heated, only the body section should be heated, excluding the bonnet section.
- When a heater is in operation, the entire valve becomes hot. Be careful not to touch it with bare hands, as burns will result.

Piping

⚠ Caution

- Before mounting, clean the surface of the flange seal and the Oring with ethanol, etc.
- 2. Be sure that the flange O-ring is compressed by 15% or more.
- 3. There is an indentation of 0.1 to 0.2mm in order to protect the flange seal surface, and it should be handled so that the seal surface is not damaged in any way. When using an outer ring, be sure that the O-ring is compressed sufficiently. (There is basically no problem with the outer ring.)

Operating Environment & Vacuum Characteristics

$oldsymbol{\Lambda}$ Caution

- The actuating piston chamber and the bellows chamber [except for XLF(V)/XLG(V)] are directly connected to atmosphere. In cases where it is necessary to avoid the discharge of particulates, use a type (-X12) with piping that conducts both chambers to the outside. When generating a vacuum, do not reduce below 700Torr.
- The gas permeation through the O-ring (FKM) seal is minute at normal temperatures, but there is a marked increase at high temperatures. Take special precautions against leaks and permeation at high temperatures.
- O-ring seal types [XLF(V), XLG(V)] suppress the entrainment of gases and the generation of particulates, however, caution should be used as these are not particulate free types, such as the bellows types [XLA(V), XLC(V), XLD(V)].

Maintenance

⚠ Caution

- When removing deposits from a valve, take care not to damage any of its parts.
- Replace the bonnet assembly when the end of its service life is approached.
- 3. If damage is suspected prior to the end of the service life, perform early maintenance.
- When operating at high temperatures, the compression set of the O-ring becomes larger, and a danger of external leakage arises. Confirm that clamps are tightened, etc.
- SMC specified parts should be used for service. Refer to the Construction/Replacement parts/Service parts table.
- When removing valve or exterior seals, take care not to damage the sealing surfaces. When installing the valve seal, be sure that the O-ring is not twisted.

Be sure to read before handling.

Manual Angle Valves/Series XLH

Precautions on Design

⚠ Warning

- The body material is A6063, the bellows and other parts are SUS316 and SUS304, and the seal material is fluoro rubber (Viton®). Use fluids which are compatible with these materials.
- When using a model with a heater (thermistor), a device should be installed to prevent over heating.

Selection

⚠ Caution

- Use within the limits of the operating pressure range. Pressure up to 0.2MPa (2kgf/cm²) can be applied only momentarily from the bellows side. However, applying pressure from the valve side tends to increase internal leakage.
- In the case of gases which cause a large amount of deposits, heat the valve body or use a model with heater to prevent deposits in the valve.

Mounting

⚠ Caution

- In models with heater (thermistor), take care not to damage the insulation components of the lead wires and connector section.
- The setting temperature for models with heater should be established without a draft or heat insulation. It will change depending on conditions such as heat retaining measures and the heating of other piping. Fine adjustment is not possible.
- When installing heater accessories or mounting a heater, check insulation resistance at the actual operating temperature. A short circuit breaker or fuse should be installed.
- When a valve is to be heated, only the body section should be heated.
- In high humidity environments, keep valves packaged until the time of installation.
- When a heater is in operation, the entire valve becomes hot. Be careful not to touch it with bare hands, as burns will result.
- Perform piping so that excessive force is not applied to the flange sections. In case there is vibration of heavy objects or attachments, etc., secure them so that torque is not applied directly to the flanges.

Piping

⚠ Caution

- Before mounting, clean the surface of the flange seal and the Oring with ethanol, etc.
- 2. Be sure that the flange O-ring is compressed by 15% or more.
- 3. There is an indentation of 0.1 to 0.2mm in order to protect the flange seal surface, and it should be handled so that the seal surface is not damaged in any way. When using an outer ring, be sure that the O-ring is compressed sufficiently. (There is basically no problem with the outer ring.)

Vacuum Characteristics

\triangle

Caution

 The gas permeation of the seal O-ring (FKM) is minute at normal temperatures, but there is a marked increase at high temperatures. Take care regarding gas discharge and gas permeation at high temperatures.

Maintenance

$oldsymbol{\Delta}$ Caution

- When removing deposits from a valve, take care not to damage any of its parts.
- Replace the handle assembly when the end of its service life is approached.
- If damage is suspected prior to the end of the service life, perform early maintenance.
- When operating at high temperatures, the compression set of the O-ring becomes larger, and a danger of external leakage arises. Confirm that clamps are tightened, etc.
- SMC specified parts should be used for service. Refer to the Construction/Replacement parts/Service parts table.
- When removing valve or exterior seals, take care not to damage the sealing surfaces. When installing the valve seal, be sure that the O-ring is not twisted.

Be sure to read before handling.

Angle Solenoid Valve/Series XLS

Precautions on Design

A Warning

- The body material is A6063, the bellows and other parts are SUS316L and 13Cr stainless steel, and the seal material is fluoro rubber (Viton®). Use fluids which are compatible with these materials.
- In cases without an operating power supply, the starting voltage is applied for only 0.15 to 0.2s, and after this, a holding voltage (25% of the starting voltage) must be applied. If not performed properly, this can cause burning of the coil and fire, etc.
- Be certain to install a fuse or short circuit breaker in the power supply circuit.

Selection

 Use within the limits of the operating pressure range. There will be a marked decrease in durability at pressures above specification.

Mounting

- In high humidity environments, keep valves packaged until the time of installation.
- Secure the lead wires so that they have sufficient slack, without any unreasonable force applied to them.

Piping

⚠ Caution

- Before mounting, clean the surface of the flange seal and the Oring with ethanol, etc.
- 2. Be sure that the flange O-ring is compressed by 15% or more.
- 3. There is an indentation of 0.1 to 0.2mm in order to protect the flange seal surface, and it should be handled so that the seal surface is not damaged in any way. When using an outer ring, be sure that the O-ring is compressed sufficiently. (There is basically no problem with the outer ring.)

Maintenance

⚠ Caution

- Replace the core and armature assemblies when the end of their service life is approached.
- If damage is suspected prior to the end of the service life, perform early maintenance.
- SMC specified parts should be used for service parts. Refer to Replacement parts on page 43 for further details.

Straight Solenoid Valve/Series XSA

Precautions on Design

⚠ Warning

- The body material is SUS304, the electromagnet is 13Cr stainless steel, and the seal material is fluoro rubber (Viton®). Use fluids which are compatible with these materials.
- Be certain to install a fuse or short circuit breaker in the power supply circuit.

Mounting

- In high humidity environments, keep valves packaged until the time of installation.
- Secure the lead wires so that they have sufficient slack, without any unreasonable force applied to them.

Piping

⚠ Caution

- 1. Before mounting, clean the sealing surface with ethanol, etc.
- Fasten the VCR® and SWJ (Swagelok)® properly, in accordance with the specified torque and methods prescribed by both companies
 - Reference VCR: 1/8 turn after tightening by hand SWJ: 1 1/4 turns after tightening by hand
- Attach the valve using body bottom mounting screws (2-M5 P=15).
- * VCR® Fitting is a registered trade mark of the Cajon Company, and Swagelok ® Fitting is a registered trade mark of the Crawford Fitting Company Inc..

Maintenance

⚠ Caution

- Replace the armature and core assemblies when the end of their service life is approached.
- If damage is suspected prior to the end of the service life, perform early maintenance.
- 3. SMC specified parts should be used for service parts.

Be sure to read before handling.

Maintenance Parts

Air operated angle valve/Manual valve Bonnet & handle assembly/Construction part number: (1)

Madal	Temperature			Valve	size		
Model	specifications	XL□□-16	XL □□-25	XL□□-40	XL□□-50	XL□□-63	XL□□-80
XLA	General use	XLA16-30-1	XLA25-30-1	XLA40-30-1	XLA50-30-1	XLA63-30-1	XLA80-30-1
ALA	High temperature	XLA16-30-1H	XLA25-30-1H	XLA40-30-1H	XLA50-30-1H	XLA63-30-1H	XLA80-30-1H
XLAV	General use	XLAV16-30-1	XLAV25-30-1	XLAV40-30-1	XLAV50-30-1	XLAV63-30-1	XLAV80-30-1
XLC	General use	XLC16-30-1	XLC25-30-1	XLC40-30-1	XLC50-30-1	XLC63-30-1	XLC80-30-1
ALC	High temperature	XLC16-30-1H	XLC25-30-1H	XLC40-30-1H	XLC50-30-1H	XLC63-30-1H	XLC80-30-1H
XLCV	General use	XLCV16-30-1	XLCV25-30-1	XLCV40-30-1	XLCV50-30-1	XLCV63-30-1	XLCV80-30-1
XLF	General use	XLF16-30-1	XLF25-30-1	XLF40-30-1	XLF50-30-1	XLF63-30-1	XLF80-30-1
ALF	High temperature	XLF16-30-1H	XLF25-30-1H	XLF40-30-1H	XLF50-30-1H	XLF63-30-1H	XLF80-30-1H
XLFV	General use	XLFV16-30-1	XLFV25-30-1	XLFV40-30-1	XLFV50-30-1	XLFV63-30-1	XLFV80-30-1
XLG	General use	XLG16-30-1	XLG25-30-1	XLG40-30-1	XLG50-30-1	XLG63-30-1	XLG80-30-1
ALG	High temperature	XLG16-30-1H	XLG25-30-1H	XLG40-30-1H	XLG50-30-1H	XLG63-30-1H	XLG80-30-1H
XLGV	General use	XLGV16-30-1	XLGV25-30-1	XLGV40-30-1	XLGV50-30-1	XLGV63-30-1	XLGV80-30-1
VI D	General use	_	XLD25-30-1	XLD40-30-1	XLD50-30-1	XLD63-30-1	XLD80-30-1
XLD	High temperature	-	XLD25-30-1H	XLD40-30-1H	XLD50-30-1H	XLD63-30-1H	XLD80-30-1H
XLDV	General use	-	XLDV25-30-1	XLDV40-30-1	XLDV50-30-1	XLDV63-30-1	XLDV80-30-1
XLH	Standard	XLH16-30-1	XLH25-30-1	XLH40-30-1	XLH50-30-1	_	_

Exterior seal, (M) Valve seal, S Valve seal Assemblies

Construction No.	Description	XL(A, C, H) [V]-16	XL(F, G) [V]-16	XLD [V]-25	XL(A, C, H) [V]-25	XL(F, G) [V]-25	XLD [V]-40	XL □ [V]-40	XLD [V]-50	XL□ [V]-50	XLD [V]-63	XL□ [V]-63	XLD [V]-80	XL□ [V]-80
3	Exterior seal	AS568 -025V	XLF16-6	AS568	3-030V	XLF25-6	AS568	3-035V	AS568	3-039V	AS568	3-043V	AS568	-045V
14 (-2)	(M) Valve seal	B2401	-V15V	B	B2401-V24V		B2401	-P42V	AS568	3-227V	AS568	3-233V	B2401	-V85V
14 (-2)	S Valve seal assembly	-	_	AS568 -009V	-	-	XLD40 -2-9-1A	_	XLD50 -2-9-1A	_	XLD80 -2-9-3A	_	XLD80 -2-9-3A	_

^{*} Refer to the Construction/Operation drawing of each series for the construction numbers.

Replacement heaters/Part Nos. (XLA, XLC, XLD, XLF, XLG, XLH)

	Part Nos./Mounting positions/Set quantity								
Model	H1 (heater for 80°C)	Mounting position	Set quantity	H2 (heater for 100°C)	Mounting position	Set quantity	H3 (heater for 120°C)	Mounting position	Set quantity
XL□-25	XLA25-60B-1	(a)	1	_	_	_	XLA25-60M-1	(a)	1
XL□-40	XLA25-60B-1	(a)	1	XLA25-60M-1	(a)	1	XLA25-60M-2	(b) (c)	1
XL□-50	XLA25-60B-2	(b) (c)	1	XLA25-60M-1	(a)	1	XLA25-60M-2	(b) (c)	1
XL□-63	XLA25-60B-2	(b) (c)	1	XLA25-60M-2	(b) (c)	1	XLA25-60M-3	(a) (b) (c)	1
XL□-80	XLA25-60B-3	(a) (b) (c)	1	XLA25-60M-3	(a) (b) (c)	1	XLA25-60M-2	(b) (c)	2

Note 1) The above (a), (b), (c) indicate heater mounting positions. The heater mounting positions (a), (b), (c) are shown in the dimension drawing for each series. Note 2) Heater set quantity indicates multiple heaters.

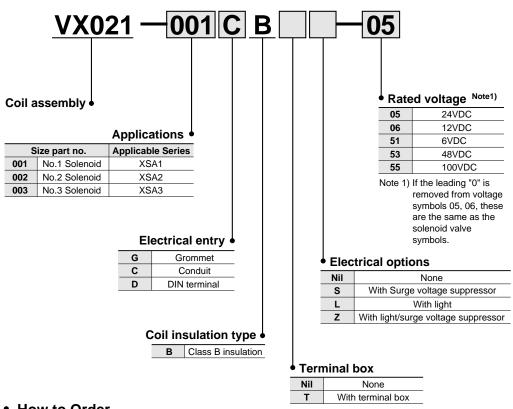
Angle solenoid valve

Construction No.	Description	XLS-16-□□	XLS-16-P□□	XLS-25-□□	XLS-25-P□□		
2	Coil assembly	XLS16-20- ਭ G, C, T, D	XLS16-20-P⊛G	XLS25-20- ③ G, C, T, D	XLS25-20-P®G		
6	Core assembly	XLS16	3-30-1	XLS25-30-1			
4	Armature assembly	XLS16	3-30-2	XLS25	5-30-2		
3-1	Core O-ring	AS568	-018V	AS568-018V			
3-2	Bonnet O-ring	AS568	-025V	AS568	-030V		

Note) The voltage symbol is entered here. (Refer to "How to Order")

The letters G, C, T and D following 13 indicate grommet, conduit, terminal and DIN respectively.

⁽Example) The heaters included with XLA-80-H3 are 2 pieces of XLH25-60M-2 (a set including 2 heater units).


^{*} Refer to the Construction/Operation sections for construction numbers.

Specific Product Precautions 6

Be sure to read before handling.

Maintenance Parts Straight solenoid valve (normally closed) Description XSA1 XSA2 XSA3 Construction No. 1 VX070-010-1 VX070-011 VX070-012 Retainer VX021-001GB-X44 VX021-002GB-X44 VX021-003GB-X44 100VAC (2) Coil assembly DC (Refer to the section "How to Order Coil Assembly") (3) XSA122-30-1 XSA232-30-1 XSA343-30-1 Core assembly (4) Armature assembly XSA122-30-4 XSA232-30-4 XSA343-30-4 **Exterior seal** AS568-016V AS568-019V

How to Order Coil Assembly (DC for XSA)

How to Order

(Example) Series XSA1 with 12VDC grommet.

Mode: VX021-001GB-06

(Example) Series XSA2 with 24VDC DIN terminal (terminal box).

Mode: VX021-002DBT-05

(Example) Series XSA3 with 24VDC terminal, surge voltage suppressor and light.

Mode: VX021-003CBTZ-05

Coil combinations

(Electrical entry, Coil insulation type, Electrical options)

(Liberion String, Con modification type, Liberion options)								
Electrical entry	Without	With electrical options						
	electrical options	With surge voltage suppressor	With light	With light/surge voltage suppressor				
Grommet	GB	GBS	_	_				
Conduit	СВ	_	_	_				
	CBT	CBTS	CBTL	CBTZ				
DIN townsia at	DB	_	_	_				
DIN terminal	DBT	DBTS	DBTL	DBTZ				

st The applicable voltage with light, and with light/surge voltage suppressor, is 24VDC only.

^{*} Refer to the Construction/Operation sections for construction numbers.

World Wide SMC Support...

North American Branch Offices For a branch office near you call: 1-800-SMC-SMC1 (762-7621)

SMC Pneumatics Inc. (Atlanta)

1440 Lakes Parkway, Suite 600 Lawrenceville, GA 30043 Tel: (770) 624-1940 FAX: (770) 624-1943

SMC Pneumatics Inc. (Austin)

9101 Wall Street, Suite 1030 Austin, TX 78754 Tel: (512) 926-2646 FAX: (512) 926-7055

SMC Pneumatics Inc. (Binghamton)

27 Link Drive Binghamton, NY 13904 Tel: (607) 773-1300 Fax: (607) 773-8008

SMC Pneumatics Inc. (Boston)

Zero Centennial Drive Peabody, MA 01960 Tel: (978) 326-3600 Fax: (978) 326-3700

SMC Pneumatics Inc. (Charlotte)

5029-B West W.T. Harris Blvd. Charlotte, NC 28269 Tel: (704) 597-9292 FAX: (704) 596-9561

SMC Pneumatics Inc. (Chicago)

27725 Diehl Road Warrenville, IL 60555 Tel: (630) 393-0080 FAX: (630) 393-0084

SMC Pneumatics Inc. (Cincinnati)

4598 Olympic Blvd. Erlanger, KY 41018 Tel: (859) 647-5600 FAX: (859) 647-5609

SMC Pneumatics Inc. (Cleveland)

2305 East Aurora Rd., Unit A-3 Twinsburg, OH 44087 Tel: (330) 963-2727 FAX: (330) 963-2730

SMC Pneumatics Inc. (Columbus)

3687 Corporate Drive Columbus, OH 43231 Tel: (614) 895-9765 FAX: (614) 895-9780

SMC Pneumatics Inc. (Dallas)

12801 N. Stemmons Frwy, Ste. 815 Dallas, TX 75234 Tel: (972) 406-0082 FAX: (972) 406-9904

SMC Pneumatics Inc. (Detroit)

2990 Technology Drive Rochester Hills, MI 48309 Tel: (248) 299-0202 FAX: (248) 293-3333

SMC Pneumatics Inc. (Houston)

9001 Jameel, Suite 180 Houston, TX 77040 Tel: (713) 460-0762 FAX: (713) 460-1510

SMC Pneumatics Inc. (L.A.)

14191 Myford Road Tustin, CA 92780 Tel: (714) 669-1701 FAX: (714) 669-1715

SMC Pneumatics Inc. (Milwaukee)

16850 W. Victor Road New Berlin, WI 53151 Tel: (262) 827-0080 FAX: (262) 827-0092

SMC Pneumatics Inc. (Mnpls.)

990 Lone Oak Road, Suite 162 Eagan, MN 55121 Tel: (651) 688-3490 FAX: (651) 688-9013

SMC Pneumatics Inc. (Nashville)

5000 Linbar Drive, Suite 297 Nashville, TN 37211 Tel: (615) 331-0020 FAX: (615) 331-9950

SMC Pneumatics Inc. (Newark)

3434 US Hwy. 22 West, Ste. 110 Somerville, NJ 08876

Tel: (908) 253-3241 FAX: (908) 253-3452

SMC Pneumatics Inc. (Phoenix)

2001 W. Melinda Lane Phoenix, AZ 85027 Tel: (623) 492-0908 FAX: (623) 492-9493

SMC Pneumatics Inc. (Portland)

14107 N.E. Airport Way Portland, OR 97230 Tel: (503) 252-9299 FAX: (503) 252-9253

SMC Pneumatics Inc. (Richmond)

5377 Glen Alden Drive Richmond, VA 23231 Tel: (804) 222-2762 FAX: (804) 222-5221

SMC Pneumatics Inc. (Rochester)

245 Summit Point Drive Henrietta, NY 14467 Tel: (716) 321-1300 FAX: (716) 321-1865

SMC Pneumatics Inc. (S.F.)

85 Nicholson Lane San Jose, CA 95134 Tel: (408) 943-9600 FAX: (408) 943-9111

SMC Pneumatics Inc. (St. Louis)

4130 Rider Trail North Earth City, MO 63045 Tel: (314) 209-0080 FAX: (314) 209-0085

SMC Pneumatics Inc. (Tampa)

8507-H Benjamin Road Tampa, FL 33634 Tel: (813) 243-8350 FAX: (813) 243-8621

SMC Pneumatics Inc. (Tulsa)

10203 A East 61st Street Tulsa, OK 74146 Tel: (918) 252-7820 FAX: (918) 252-9511

Europe **ENGLAND**

SMC Pneumatics (U.K.) Ltd. **GERMANY**

SMC Pneumatik GmbH

SMC Italia SpA

FRANCE SMC Pneumatique SA HOLLAND

SMC Controls BV **SWEDEN**

SMC Pneumatics Sweden AB

SWITZERLAND SMC Pneumatik AG **AUSTRIA**

SMC Pneumatik GmbH **SPAIN**

SMC España, S.A. **IRELAND**

SMC Pneumatics (Ireland) Ltd.

SMC Thailand Ltd.

INDIA

SMC Pneumatics (India) Pvt., Ltd.

North America CANADA

SMC Pneumatics (Canada) Ltd.

SMC Pneumatics (Mexico) S.A. de C.V.

South America **ARGENTINA** SMC Argentina S.A.

SMC Pneumatics (Chile) Ltda.

Oceania **AUSTRALIA**

SMC Pneumatics (Australia) Pty. Ltd.

NEW ZEALAND

SMC Pneumatics (N.Z.) Ltd.

Asia JAPAN

SMC Corporation

SMC Pneumatics Korea Co., Ltd.

SMC (China) Co., Ltd.

HONĠ KONĠ

SMC Pneumatics (Hong Kong) Ltd. SINGAPORE

SMC Pneumatics (S.E.A.) Pte. Ltd.

PHILIPPINES SMC Pneumatics (Philippines), Inc.

MALAYSIA SMC Pneumatics (S.E.A.) Sdn. Bhd.

SMC Pneumatics (Taiwan) Co., Ltd.

THAILAND

SMC offers the same quality and engineering expertise in many other pneumatic components

Directional Control Valves Manual Valves Mufflers **Exhaust Cleaners**

Quick Exhaust Valves

Valves

Proportional Valves Mechanical Valves Miniature Valves Fluid Valves

Cylinders/Actuators Compact Cylinders

Miniature Cylinders Rodless Cylinders Rotary Actuators Pneumatic Grippers

Vacuum Ejectors Vacuum Accessories

Instrumentation Pneumatic Positioners **Pneumatic Transducers**

Air Preparation Equipment Filters-Regulators-Lubricators

Coalescing Filters Micro Mist Separators

Fittings Air Fittings

SMC Pneumatics Inc.

P.O. Box 26640, Indianapolis, IN 46226 Tel: (317) 899-4440 • FAX: (317) 899-3102